= Description of 1/O

Device Drivers

5.1 Cassette Output Device Driver

Without a device driver for writing data to tape, you have no way
to store data onto tape even if the hardware circuit supports an
audio output interface.

Before discussing the tape write device driver, we will describe
the relationship between the tape write device driver and the
command interpreter, which will affect the way the device driver
executes. '

COMMAND INTERPRETER

The MPF-I/88 monitor program contains a command ‘interpreter,
which prepares a user-entered monitor command in such a way that
it becomes easier for the monitor to process the entered command.

A monitor command is always entered with the command character.
For example, if a tape write is to be performed, then the command
character is W. Sometimes a command is entered with addresses and
user-specified information. For exampre, if you intend to write
information to tape, the command line may appear as follows:

>W 100:00 89 /'TEST

Once this command line is entered, the command interpreter will
count the number of addresses contained in the command line and
store this number into CH. It will also count the number of
bytes entered as user-specified information and load the number
into CL. In the above, example, the number of bytes is four since
each of the character in a filename takes one byte.

Each time a monitor command is entered, the command interpreter
will be called. when being called, the command interpreter will
process the command line entered in the manner described above
and then pass the necessary information of the command interpre-
tation process and control to the individual monitor command for
further processing.

SOME BASIC MACRO ASSEMBLER DIRECTIVES

Before going any further to explain the tape write device driver,
it is necessary to pause for a while to study the Macro Assembler
directives since the monitor program was assembled using Micro-
soft's Macro Assembler. In order to trace the monitor program
thoroughly, you must be familiar with the use of the Macro
Assembler.

The PROC Assembler Directive

The tape output driver W_CMD begins with the MS-DOS Macro
Assembler directive PROC (short for procedure). The PROC direc-

tive is used to make the program more readable to users. During
program assembly time, it tells the assembler that a whole PROC
block is to follow. In other words, a block of assembly program
instructions will follow the PROC assembler directive., A PROC is
executed from a CALL or JMP instruction. For more details of the
MS-DOS assembler directives, you can refer to Microsoft's Macro
Assembler Manual. If you don't have that manual, consult your
MPF-I/88 distributor for information on how to purchase that
manual.

The W_CMD procedure contains the following important procedures:

FILE_WRITE
TAPE_WRITE
WRITE_1 BYTE
WRITE_1 BIT

Write MPF-I/88 tape format to tape.
Write IBM PC tape format to tape.
Write one byte to tape.

Write one bit to tape.

TR TS

The functions of these procedures will be explained later. After
reading the descriptions of these procedures, you are suggested
to trace these procedures instruction by instruction. Tracing a
program is the best way to learn programming.

Now you are suggested to find the W_CMD procedure in the MPF-I/88
Monitor Program Source Listing. To get to know how to read the
monitor source program, you need to refer to the Microsoft's MS-
DOS Operating System Macro Assembler Manual and Microsoft's
Cross-Reference Utility for MS-DOS Operating System. If you do
not know how to get these two manuals, please consult your MPF-
1/88 distributor. But even if you do not have the two manuals at
hand, we will still teach you how to read the monitor source
program,

Po find the W _CMD procedure, you need to use the cross reference
section of the monitor source program listing. The first page of
the monitor source program listing comes under the heading

The Microsoft MACRO Assembler, Version 1.25 Page 1-1

That message says that the monitor source program was assembled
using Microsoft's MACRO Assembler, Version 1.25. Since there are
several different versions for the Macro Assembler, it is
important to note the version number in order to distinguish
among different versions. Page number is printed together with
the heading on each page for easy reference. What comes on the
next line following the heading is the date it tells when the
monitor source program was assembled. A general practice is that
a monitor program will have to be assembled for many times before
it is finally released. From the program listing of the MPF-1/88
monitor program, you will know that the current release of the
monitor program is based on the source program which was
assembled on Jan. 17, 1985. Sometimes it is possible for a
company to upgrade the software without prior notice..

SYMBOL TABLE

Thumbing through the monitor source program listing, you will
discover that there are 78 pages which are printed under the same
heading. Then you will come across the part designated as the
symbol table for the source program you have just gone though.
The symbol table lists all the symbols used in the program and
gives such information as type, value, and attribute related to a
symbol. Please refer to Microsoft's Macro Assembler Manual for
details. The symbol table comes under the heading:

The Microsoft MACRO Assembler, Version 1.25 Page Symbols-1
You will find that there are a total of 14 pages of symbol table.

CROSS REFERENCE

Then comes the cross reference section which is printed under the
heading:

Symbol Cross Reference (# is definition) Cref-1

You will find that there are a total of 14 pages of cross
reference.

The most efficient way to find a routine in the source program
such as W CMD is to use the cross reference. The entries in the
cross reference section are listed alphabetically. To find the
location of the procedure W _CMD, you should go through the
entries until you found W_CMB. On page 14 (Cref-14) you can
locate the entry of W CMD. It is listed as follows:

WCMD tevuieeenanenaana. 29404 2991 4083

The three numbers following the procedure name W_CMD are the line
numbers affixed to each program line in the monitor source
program listing by the Macro Assembler. Note that each line of
the monitor source program listing is prefixed with a 1line
number. The three numbers are where you can find the name W_CMD.
The line number with a # sign is where the name W CMD is defined.
To find out how W_CMD works, you should refer to line 294¢ which
is located on page 1-54.

The ASSUME Assembler Directive

Following the CLI instruction is the assembler directive ASSUME.
This directive tells the Macro Assembler where (in which segment)
symbols can be referenced. In the tape output driver program,
symbols can be referenced through CS and DS registers. The code
segment is pointed to by CS register and the data segment is

5-3

pointed to by the DS register.
LABEL

To output a bit from the system, you must first 1load the DX
register with the 1/0 port address (18¢H), which is specified by
the 1label TAPE IO OUT. A label is a name which is converted to
an address when the program is assembled by the assembler. A
label is wusually the destination for a JMP, CALL, or LOOP
instruction.

For more detailed definition for LABEL and the use of the LABEL
directive, please refer to Microsoft's Macro Assembler Manual.

The W_CMD procedure contains the following labels:

W_CMD_1
W_CMD_2
FILE_LEADER
WRITE_BLOCK
WRITE_CRC_BYTE
WRITE TAILER

When a program is too complex to trace, you are suggested to
trace the 1labels first and then you will be able to know the
program logic, based on your understanding of labels and
procedures.

Now we are going to introduce to you some basics on the write-to-
tape device driver.

Bit 6 of the output port TAPE_IO_OUT is the bit from which data
is written out

When information is to be output from the system, bit 6 of the
port specified by TAPE_IO_OUT is used to send out the bit string.

Disable Interrupt

The DISABLE_INT routine clears the interrupt flag and NMI
interrupt so that a tape write operation will not be interrupted
by another event.

OUTPUT A BIT 1

when information is written to tape, actually a bit string con-
sisting of =zeroes and ones are output serially from bit 6 of
TAPE_IO_OUT port.

When a one is to be output, bit 6 of port 180H actually outputs a
one ms (millisecond) pulse with a high 560 ns (nanosecond) half
cycle and a low 500 ns half cycle. .

OUTPUT A BIT @

When a zero is to be output, bit 6 of port 180H actually outputs
a 0.5 ms (millisecond) pulse with a hlgh 250 ns (nanosecond) half
cycle and a low 250 ns half cycle.

FUNCTIONAL DESCRIPTION OF TAPE OUTPUT DRIVER

The following 1is a functional description of the tape output
driver W_CMD.

After the command information as processed by the command inter-
preter is submitted to the individual command, the individual
command will examine if the command is entered according to the

command syntax. If it is entered according to the command
syntax, a CALL or JMP instruction will be executed to perform the
desired functions. If not, the command will set the Carry flag

and a RET instruction will return program control to the command
interpreter, which will then dlsplay the error code telling the
user that the command entered is not executable because of com-
mand syntax error. Note that when an error is detected by the
individual command, it will always set the Carry flag to let the
command 1nterpreter know that an error has occurred..

For the W_CMD routine, it will first check if the entered command
follows the defined syntax of the command. If not, an error
message will be shown. The W_CMD routine assumes that a memory
range will be output to tape, thus the starting address of the
memory range should always be smaller than the ending address.
If the starting and ending addresses are entered otherwise, then
a range incorrect error will be displayed.

FILE_NAME_FILLER -- Filler Bytes

After W_CMD has performed the command syntax and the memory range
checks, it will check whether the length of filename is less than
eight characters. The 1length of a filename should never be
greater than eight bytes (characters). If it is greater than
eight characters, then error message will be displayed by the
command interpreter. If the filename length is less than eight
characters, the W_CMD routine will continue by «calling the
FILE_NAME FILLER.

An 8-byte memory space is reserved for the characters which make
up the filename. If less than eight characters are used, FILE

NAME_FILLER will fill the unused memory space with the ASCII code
for “the space character (20H) and execute a RET to the main
program to execute W_CMD_2. W CMD 2 will place the end of file-
name code (@AQH) to the position 1mmed1ately following the memory
space containing the filename. The remaining instructions of
W _CMD_2 are designed to prepare a set of pointers and counter
such ~as the ES, SI, and CX. The ES and SI are loaded with the

segment and offset addresses of the starting address, respec-
tively, while CX is loaded with the value of file length.

FILE WRITE -- Writing MPF-I/88 Tape Format to Tape

After loading the pointers and counter with appropriate values,
the tape output driver will write the MPF-I/88 tape format to
tape. MPF-I1/88 tape format is described below:

MPF 1/88 TAPE FORMAT

¢ «

4% T % T

Fiie_leader | Sync| Sync [l byte: filename : cre | Data cre | alias
256 byces | bit | byte | delimiter "age | File_leader SYnc | SYnc | 256 bytes | 2 | 256 byces | 2 | fr &9
g | «p= (~glen~|4 bytes: starting 256 bytes bit | byte lbyte bytes! Bytes

| | FILE_MESSAGE_DATA
| 1 8 bytes: filename|

bata

i address; | R b "ew ["@LEHT
i seg.:offset | i
l I 2 bytes: file length i I s |
: 4

R ——_ ¥

The MPF-1/88 tape format starts with a file 1leader. The file
leader is 256 consecutive bytes of zeroes. The file leader is
designed to let the system know that a file is about to start
when data is to be read back to the system. After writing the
leader to tape, the tape output driver will write a sync bit 1
and a sync byte 16H, which is followed by the filename, starting
address of the memory range to be output, and file length, to
tape.

Writing a 0.2 Second Delay to Tape

Since the tape input device driver is designed to be able to read
information stored in IBM Personal Computer tape format, the MPF-
1/88 tape output driver will also write the IBM PC tape format to
tape with the TAPE_WRITE procedure. But before writing the IBM PC
tape format to tape, a 0.2 second delay is output to tape to
separate the MPF-1/88 and IBM PC tape format.

TAPE_WRITE -- Writing Data Block to Tape

After writing the @.2 second delay, the tape output device driver
will write data block to tape.

WRITE_BLOCK

This block of instructions (sometimes a block of instructions is
also called a program module) performs the actual data output

operation. It calls WRITE_BYTE, and WRITE_l_BYTE in turn calls
WRITE_1 BIT in order to output data to tape.

WRITE_FILLER_BYTE

Data is written to tapé in units of 256 bytes. In other words,
256 bytes form'a data record. If the-data to be recorded unto
tape 1is 1less than 256 bytes, the unused bytes are filled with
filler bytes, which is meaningless to the system when they are
read back from tape. Since one data record is insufficient for
recording the tape format, the unused area of the second data
record is filled with filler bytes. :

WRITE_1_BIT and WRITE_l_BYTE

Data 1is written to tape one bit at a time. The data bit to be
output is first placed in the Carry flag and then output to bit 6
of port TAPE IO_OUT. One byte of data is output by using the
LOOP WRITE_ALE_BIT instruction. :

WRITE_CRC_BYTE

When WRITE_1 BYTE is executed, the subroutine CRC_GEN (CRC byte
generator) is called. CRC_GEN is called to generate the values
to be placed in the two CRC bytes. After 256 bytes have been
output to tape, WRITE_CRC_BYTE will write two CRC bytes to tape.

WRITE_TAILER

After the whole memory range is output to tape, a file tailer
will be output to tape by WRITE_TAILER. The file tailer consists
of four bytes of 1.

A CLOSER LOOK OF WRITE_l1_ BIT

Although we assume that at this time you have cultivated the
habit of tracing the instructions of a program in

order to follow the logic flow of a program, we still feel you
may be interested in some of the programming techniques applied
to write the tape output driver. We will trace the WRITE_1 BIT
procedure in more detail below.

DISPLAY_ 250

After PUSHing CX and AX onto the system stack (This is for saving
the values of CX and AX) for future use, since the values of
these two registers will be altered in the WRITE_l1 BIT proce-
dure), the value of the variable DISPLAY_ 2584 (39 = 27H) is loaded
into CX. This value and TUNING_1 (17 = 11H) make sure that when
a zero 1is output, the pulse wave for a zero will consist of a
high 250 ns half cycle and a low 250 ns half cycle as illustrated
below:

| 2sons |
|

PULSE WAVE FOR A BIT &

Note that @C@H is loaded into AL in the first instruction of
W_BIT 0. This value represents a bit pattern of 1100¢4006. This
bit pattern is then output to port TAPE_IO_OUT which is addressed

by DX. Note bits 7 and 6 are both one at this time. Bit 6 is
used to access the TAPE_IO_OUT port. Bit 7 actually has nothing
to do with tape output driver. However, 1if bit 7 is set to 0,

then you won't be able to activate the printer when you intend to
access the printer later. This is because that bit 7 of port 180H
is used for printer strobe.

AL is ANDed with the value @BFH in order to set bit 6 of
TAPE_IO_OUT to zero. After bit 6 is set to zero as a result of
the AND operation, the bit pattern 10111111 is output to
TAPE_IO_OUT using the OUT instruction. This begins the low 259
ns half cycle of a zero pulse wave.

The Carry Flag

The instruction JNC W BIT @ A in the WRITE 1 BIT procedure is
used to determine if a bit @ is to be output to tape. Lifs A sl
program execution will flow to W BIT @ as we have just mentioned.
If the carry flag is set, then a bit 1 is to be output to tape
and W _BIT_1 will be executed. Note that when a bit 1 is to be
output to tape, the time delay for the LOOP operation will be
lengthened by adding DISPLAY 250 to TUNING 2 (61 = 3DH). This is
because a bit 1 takes a high 500 ns half cycle and a low 568 ns
half cycle to represent. The pulse wave for a bit 1 is illus-
trated as follows:

—soons ——-{-—soons—-‘[
|

The values for DISPLAY_ 25@¢, TUNING_1, and TUNING_2 are caculated
by summing up the execution time of each instruction involved in
a WRITE_1 BIT operation. You <can try to figure out how to
calculate these values as an exercise.

5.2 Cassette Input Device Driver

Without a device driver for reading data from tape, you have no
way to access data which is stored on tape even if the
information was previously stored on ‘tape with a tape output
(write-to-tape) device driver such as the one we have mentioned
in the previous chapter.

If you have already traced the instructions in the previous
experiment, then the read-from-tape device driver to be discussed
will be easy for you to understand.

Instead of discussing the instructions one by one, we will study
the device driver modularly. 1In other words, the monitor command
R (or the R_CMD procedure) 1is discussed according to the
functions of each procedure used in the tape input device driver.

The device driver allows you to read MPF-1/88 or IBM PC formatted
tape. However, if you intend to load a tape of IBM PC tape
format to the memory of MPF-I/88, you must make sure there is
enough amount of RAM for the program to be loaded.

You are suggested to read the chapter on I/0 Programming of this
manual in order to get some basic I/0 programming concepts before
reading the following paragraphs any further. You are also
suggested to trace the instructions of the procedures carefully
as listed in MPF-I1/88 Monitor Program Source Listing in order to
learn the art of 8088 assembly language programming. Tracing a
program can be one of the best ways to learn programming.

After reading the chapter on I/0 Programming and open up your
MPF-I/88 Monitor Program Source Listing, you are ready to read
further.

The device driver (procedure R_CMD) contains the following
procedures:

FILE_READ
TAPE_READ
READ_BLOCK
READ_1_BYTE
READ_1 BIT
READ_HALF_BIT

A smart way to learn programming is to trace a program modularly.
You are suggested to try to figure out the function of each
procedure and then the function of labels contained in the R_CMD
procedure.

If a procedure is too complex to trace, examine the functions of
labels related to the procedure first and then you will have some
ideas of how the procedure works to complete a specific task.
This is the kind of decipline that good programmers need.

LABEL

A label is a name that serves as the target of LOOP, JUMP, and

CALL instructions. In other words, a label is used as the
operand for LOOP, JUMP, and CALL instructions. A label is
assigned an address by the assembler. A label is entered by the

program in the source program. After the source program has been
assembled, labels are converted to addresses by the assembler.
Please refer to Microsoft's Macro Assembler Manual for wmore
details about label.

FUNCTIONAL DESCRIPTION OF THE TAPE-READ DEVICE DRIVER

The following is a functional description of the tape-read device
driver.

Check If a Command Line Is Entered Correctly

To read data from tape, the tape input device driver first checks
if the command line was entered without syntax error and whether
a legal filename was entered.

As you may recall, the command interpreter will submit some data
to the R command (the read-from-tape device driver). The case is
similar to the W command. In case a command line is entered as
follows:

>R <addr>/<filename>

The command interpreter will store the number of addresses
entered in CH and the number of characters which make up the
filename in CL.

Two CMP instructions are used to check if the command 1line was
entered without syntax error and whether a legal filename was
entered. If an error is detected, the command interpreter will
display the corresponding error code of that error.

I1f the command line is entered correctly, the device driver will
execute the FILE_READ procedure to fetch the MPF-1/88 file
leader, including the sync bit, sync byte, etc.

Since data 1is written to tape in a pre-defined tape format as
mentioned in the previous experiment and Chapter 8, 1I/0 Pro-
gramming, of the MPF-I/88 User's Manual, data is read back into
the system according to the same tape format, Thus, after MPF-
1/88 file leader has been read from tape, the device driver will
execute procedure TAPE_READ to fetch the IBM PC tape leader.

After the IBM PC file leader has been fetched, the device driver
will execute the procedure READ_BLOCK to fetch the 256-byte data
record and the accompanying CRC bytes.

After all the data records and the accompanying CRC bytes have
been read back to system memory, the device driver will execute
procedure READ_TAILER to fetch the four tailer bytes to complete
the R_CMD procedure.

Unlike the W_CMD which writes to tape one bit at a time using
procedure WRITE_1_BIT, the most critical procedure contained in
the R_CMD procedure is READ_HALF_BIT.

A CLOSER LOOK OF READ_HALF BIT

The instruction IN AL,DX is used to read data from bit 7 of input
port TAPE_IO IN (1CUH) to system. As you may remember, a bit ¢
is the equivalent of a pulse whose pulse width is 500 ns (con-
sisting of a low 250 ns half cycle and a high 253 ns half cycle)
while a bit 1 is a pulse with a pulse width of 9.5 ms (consisting
of a low 500 ns half cycle and a high 500 ns half cycle). A low
is sensed from bit 7 of the tape input port 1C@H (using IN AL,DX)
is when nothing is sent from tape. Once a high is sensed, it
means either a bit @ or a bit 1 is read from tape.

Detecting a High from Bit 7 of the Tape Input Port
The instruction XOR AL, TAPE_STATUS does the job.

TAPE_STATUS is a memory location which is assigned with the
variable name TAPE_STATUS by the DB (Define Byte) assembler
directive.

The DB assembler directive tells the assember to reserve a memory
space (which is identified by the variable name TAPE_STATUS) for
a value, which may be altered during program execution.

TAPE_STATUS, as its name implies, 1is used to signal the tape
status. If a high is sensed from bit 7 of the tape input. port,
the contents of this variable are set to 1. If a low is sensed,
the value of this variable is set to 0.

Upon system initialization, the value of TAPE STATUS is cleared
to @. If AL contains a zero, then the zero flag is set and the
instruction JS READ NEXT STATUS will cause READ_NEXT_STATUS to be
executed again in order to detect a low-to-high tranSition of bit
7 of tape input port. If a non-zero value is stored in AL, then
it means that a low-to-high transition occurs at bit 7 of the
tape input port. After this low-to-high transition is detected,
the value of TAPE_STATUS is altered.

When a low-to-high transition is detected at bit 7 of the tape
input port, it means that either a zero or a one has been read by
the system,

But how does the system distinguish between a bit 6 and a bit 12

The instruction OR CX,CX does this job. CX contains the value
specified by 2 x DELAY_ 375. This value is ORed with itself in
order to detect if a zero is contained in CX. If CX contains a
zero, it means the counter CX has counted to =zero when
TAPE_STATUS is changed. If this is the case, a one was read from
tape to system. If the Sign flag is not set, it means a non-zero
result 1is in CX (this indicates that a low-to-high transition
occurred before the value in CX was decremented to zero), In this
case, a bit @ is read from tape to system.

It is the counter value stored in CX that determines if a bit 0
or bit 1 was read from tape. This value is derived from summing
up the execution time of the related instructions.

By storing an appropriate value in CX, you can detect whether a
bit @ or a bit 1 is read from tape in a half cycle.

