

MPF- I/88

User's Manual

Table of Contents

Chdpier 1 Getting to Know Your MPF-1/88

Unpacklng arelaieia eteietelelaNere s e tol Slererbreneravareis T D e L L
Wwhat is on the MPF-1/88 Maln BOAYA2 cecceeoncsnsonsce «1-1
What can the MPF-1/88 DO?.eecsccccnnse T T .1-2
How to Set up the MPF-1/88 for Use?...ceeecccccacss s1-2
What to Do if the MPF-I/88 Didn't Respond as

It should?..... S etaTele e e et via Sietensie elete T s s rezereie =

Chapter 2 " Introduction to System Hardware

NNNN

*« & » @
= W

The Three Main Parts of MPF-I/88..cceecceccccsscs ety

2-1
What Is the CPUZceessesissssssesssssssssiasess e S o |
What IS MEeMOEY?.ceessecccscssssoscsscscscnsonccns .

What Input/Output Devices Does the MPW 1/88 Include?

-- Buzzer, Display, Keyboard, Printer Port, Audio

Tape Interface, LED Lamp, The Main Power Input,
Expansion Interface.......... Sieasteiee e e el s e e e e e e e ieieTe 2-3

Chapter 3 Entering and Executing a Sample Program

A Sample Assembly PrograM.cccccececess satetaterareialio ereseteye w0 SlaereraseiD =i

Chapter 4 Using a Tape Recorder with MPF-1/88

Recording on TapCesesecsecss Rt sl S L
Loading from Tap€.eceeeee T T T T TR 20) dedeed=2

Chapter 5 Monitor Commands

5.3.13

Part E
5.3.14

5.3.15

Functions of the MONitoOr Program....cceeeceececesesssb=1

Syntax NotatioN..ueeeeeseceeeeeacececeecacncacnsssseed=2

Specifying address when using the monitor...........5=2

The Display Bufferveisavavpiinuasieniueaini.seniiiaisD=3

Editing a Command Line

The Command Line Buffer

Ed1ting? FURCEIONS It S o o siaieninse sreisisraintonunzusnessrasoaesei Dol

Moving the Cursor in the Command Buffer.....ceceeeee.5=9

Internal PointerS i vewsinsisenis st i s 8555 i s oioie omsione D=1
Monitor Command ListiNng:coeaossswesms sonanes sunsiees as=1]:
Explanation of the Monitor CommandS.....ceececeecoeseb=12

- The Line Assembler and DisassembDler.iceeecesceeeeeb=12

Command A - Enter the Line ASSembler .e.eeeeeeeeeeceeesb=12
Command L - Enter the Disassembler...cecececeees siaesH=13

- Program Execution CommandsS......ececececcccsccccecsd=17

Command G - Execute & PrOgraM....ceeeeecccescsccecseed=17
Command S - Execute a Program step by step..........5-18

= DebUGGING o0 sinreiniarorgiorereisrerahioreneralsroxe slsrs s telacslersvarsin stsiarsie 5 =20

Command B - Set/Show BreaKkpPOintS..eeeeeecesoeesceeess5=-20
Command C - Cancel BreakpointS...eeeeeeeeaoccecoseaee’=22
Command X - Examine/Alter the Contents of Registers.5-23
Command M - Examine/Change the Contents of

MEMOLY eeeoos e sieieeierale & iae Bieeteiniele aialete ela e ate D=2 4

- Examining or Altering Memory of Registers..c.eeees..5-28

Command I Insert Data into Memory LocationS.......5-28
Command D - Delete Data in MEMOIrY...eesesoesecaceses’=31
Command F - Find A String of Characters in

MEMOL S, ¢.5 o064 0reo ote v esnsorarnraiaraiursinisreioieraiotssosassin/ D=3 O
Command J - Move New Values into the CS and .
IP ‘TedistersS. e siiviesaat s s dniins oeb=38
Copy the Contents of a Memory
Range to a Specified Area in
MEMOL YIS < 0ie: ninsoloroiesreiosecesese-ainioseissete ssaropreioie;evasei Dm0

Command T

- Miscellaneous I/0 COMMANAS . eeeeeecocososoccosessssd=4l

Command P - Adjust the Speed of Displaying on

Lhel Bereen . seiemierereieiesspsio-sranetarnrerereievstanarsraratero D=4l
Command N - Input and Display on the Screen

One Byte of Data from a Port.....eeeeoe..5-41

5.3.16 Command
5.3.17 Comnand

5.3.18 Command
5.3.19 Command

5.4, Control

Send One or More Bytes of Data to

an Output POTE e s oo seinssssesssssassesasseded?
Assign an External Terminal as

the System CoNS0l @y tutasitiine i s s cendsad
Arite Data tO TaPECeceescescccacscssessaesd-dd
Read Data £rom TaDCececcccsssssssescecsesI=4>

CHNAYaCter S.eeeeecescssssscssscsnsssscscsacsosscs

5-47

Chapter 6 Line Assembler

6.1 The Features of the Line ASSamMDLET iuis sioaerarsisssa s sieisies0=1

Chapter 7 Useful Subroutines

. .
NN NNNNNDNDNONNDN-

INT
INT
INT

INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT

INT
INT
INT
INT
INT
INT

AN NN N NNNNNNNS
¢ e s 8 8 0 8 e s »
e o v o s & 8 * s e e
WooJoOu & whH+-

s e 0
¢
oo WwWNHFR

NNNON NHFRHEFERFFEPE P

RS PN RN PN S B B B B e B B
L]

NMNONMNNDNON NDNDNNNDNNN
.

L]
N
AW &

INT

HOOQWP WO
1

F -
10
11
12
13
14

A List of Useful SubroutineS...ceccesccccccccccoccns
Function Description of the Useful Subroutines......

END OF PGMuussosonssocccosnscenansassnscccans
CONSOLE_INuoseeoosooconsoscnonasnanocncecnce
CONSOLE _OUTesseeennnnansasessesssaassasscns
GET _VALUE.:cseseeanesocansccnnsssannssoncnces
OUTTGIC D et oo SR e one samsaarasass s osSURUA o kR oaels
BEEP . v e s ssosessssseeesseessssissssnessssssn
OUTSTRING.eeeeessoesscosssossssscsscssnnanss
OUTBYTE . eoeoecossssscossssssssssssssanasssoe
RO 5. ouve.aisissieisrs 0 WRGs W tuvtacos o wioataguare: wsoolwxalala ois

< OUTRORD wiaisis staiervismasiossromragervisinase win:souointe oiule; o

— SETGETCUR..eccsssceccoannassanasssvosamanss

~ READ LINE.u:eeeososoncsossacsosnssascassaces

= ‘RETITDRINER L irsreisis s dassa s o Sy i

~ PRT DRIVER..eosessnssaoesoscssonnnsssscscns

e O S S D e S R

~ CN_IN _STATUS.esaaecscsscescsassansscncccsns

- KEY QUEUE FLUSHuoeeeousoanosscccncosaassoonne

e] I AR e T

o GET MEM SIZE.Oououcoo.o--ooouoo-oono..-oo-.

- THERMAL PRT.cevcccscsccccssovonascnccaccnes

—~ READ DATA FROM TAPE..eesssssrssscssccosacs
~ WRITE DATA TO TAPE...ecceeasosssanescssscs
~ ENABLE INTeceosocsososcenssssssassasasanse
s DTCABLR LN siereve sie ¢ 5 paism saaiossiiemssamagers o arineln

ANd 21H.ecececesocscsccsoscscsssccscsssssncsoctsnansce

o= AVAIL"MEMQOoooooo-oo-o-oooooo.ooooo-o.o-ol

B Www N -

1
L
7-12
7-13
7-13
7-13
7-14
7-15
7-15
7-15
7-15
7-15
7-16

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

HEROONSJoOoouu,

Appendices

<

rX-—IQTMMOUO®)>

CPU Pin Function Description
1/0 Expansion Bus Pin Function Description
AUTO ROM AND EXTERNAL COMMANDS

.Memory Map

I/O Port Addresses

Printer Connector Pin Assignment
Error Messages

Table of ASCIl Codes

CPU Pin Assignment

8088 Registers

8086/8088 Instruction Set Summary
8086/8088 Instruction Set —

Listed Alphabetically

8086,/8088 Instruction Set —
Object Codes in Ascending Numeric Sequence

SEEB L AEEE
SSRSSEERRE cccing to Know
EASTE T e s S .

B Esmmmmmmam YOur MPF-1/88
Bl kRSN

1.1 Unpacking

After unpacking, check whether your MPF-I/88 is complete with the
following: 3

* The MPF-1/88 itself

* 1 power supply adapter

* 3 manuals

* 2 close jumpers

1.2 What is on the MPF-1/88 Main Board?

Before we go any furthet} the user is strongly suggested to spend
a few minutes in order to get acquainted with the various parts
of the MPF-1/88 by looking at Fig. 1l-1 below:

LCD display

LED lamps
Reset Key
keyboard

ﬁﬁ n-cr-é. .6 Yuiuven wr-gue

/

power connector

cassette connectors
printer connector

expansion connector

Fig. 1-1 MPF-I/88 Physical Layout

1.3 What can the MPF-1/88 Do?

The MPF-f/SS is a versatile machine and can perform lots of
things like:

1. Execute programs, play games, let you practice on assembly
language,etc.

2. Convert assemBly language into machine code line by line as
you type it.

3. Check and debug errors found during program execution.
4. Load data from and store data to tape.

5. Examine system status by checking the contents of registers
and memory.

6. Allow you to communicate with the system by using a built-in
monitor program.

1.4 How to Set up the MPF-1/88 for Use?

It is very easy to use the MPF-I1/88, but first you have to make
the proper connections by doing the following steps:

-Connect the power adapter to the power source

-Insert the plug from the power adapter into the power adapter
jack as shown in Fig. 1-2

If you have set up the MPF-I/88 properly, the display will
show:

MPF-1/88
MONITOR VERSION 1.9

Fig. 1-3
then, ’
MPF-1/88
(c) 1984 MULTITECH
Fig. 1-4
then,
MPF-1/88

CHECK RaM

Fig. 1-5

then,

MPF-I/88

CHECK ROM []

Fig. 1-6

and finally,

>R

Fig. 1-7

‘At this point, the computer is ready to receive instuctions from
you. Details on the various commands you can use on the MPF-I/88
will be discussed in following chapters.

1.5 What to Do if the MPF-1/88 Didn't Respond as It should?

If after plugging the MPF-I1/88, the display doesn't show
anything, first check if the proper connections had been made,
like if the power adapter is connected to the power source or if
the power source is turned on Oor not. . Then, if it still doesn't
respond, contact your local Multitech dealer.

Sometimes, the MPF—I/SB might display the following messages:

l.

MPF-I1/88

RAM CHECK ERROR

Fig. 1-8

Note: This means that there is error in the RAM.

2.

MPF-1I/88

ROM CHECK ERROR

Fig. 1-9

If you get this ertor message, that means the ROM consists of one
27128 chip and it has an error.

{============ Introduction to

SEssEszsaszs System Hardware
1 O A D R R

Now you are familiar with the basic configuration of the MPF-
1/88. Before you go step to the next step, let us introduce its
hardware specifications in more details.

2.1 The Three Main Parts of MPF-1/88

The MPF-1/88 is composed of the CPU (central processor unit),
memory and other devices. Data transmission between the CPU and
memory or between the CPU and devices is through the system bus.

2.2 What Is the CPU?

The CPU is the heart of the microcomputer. The CPU controls all
operations within the system unit. The MPF-I/88 uses the Intel's
8088 16-bit microprocessor as its CPU. It operates at a clock
rate of 4.77 MHz. This is a measure of the speed at which the CPU
executes its instructions. The cycle time is @.21 microseconds.

2.3 What Is Memory?

Memory includes ROM, RAM, and an user expansion area. The overall
address range is from @@@@¢H to FFFFFH. There are the lowest and
highest number that the 8088 microprocessor can use as memory
address. However, your MPF-I/88 only uses a small subset of this
potential range of memory.

ROM stands for "read only memory" and refers to a special kind of
memory chip which retains its contents even when the power is
turned off. ROM memory chips are typically used to store software
that can be used right away when the computer is turned on. On
the MPF-I/88, the ROM memory is used to store the monitor and
line assembler software you will learn about below.

The MPF-I/88 has three sockets for ROM chips. Each of these
sockets can contain either an 8K byte ROM chip or a 16K byte ROM
chip. The standard MPF-I1/88 comes with one 16K byte ROM chip,
The ROM memory can be expanded to a total of 48K bytes by using
three 16K ROM chips.

The address ranges for the three ROM sockets are as follows.

socket name address range
ROM@ : FCO@@H - FFFFFH
ROM1: ' F80@OOH - FBFFFH
ROM2: F40G@¢@H - F7FFFH

RAM stands for "random access memory". While it is not clearly
implied by the names, the difference between ROM and RAM is that
RAM can be written to as well as read and its contents disappear
when - the power 1is turned off. RAM is typically used in
microcomputers as. a working area for programs and data. The
larger this RAM memory area is, the longer and more complicated
programs can be. &

The MPF-I/88 also has three sockets for RAM chips. Each socket
can contain either a 2K byte RAM chip or an 8K byte RAM chip. The
standard MPF-1/88 comes with two 2K byte RAM chips for a total
user memory of 4K. The RAM directly on the system board can be
expanded to 24K by using three 8K RAM chips. The two kinds of RAM
chips cannot be used together at the same time. Please see the
Appendix for a discussion of special considerations for
installing 8K RAM chips.

The address ranges for the three RAM sockets are as follows:

socket name address range when using 2K byte RAM
RAM@: G00P0H - @O7FFH
RAM1: ¥080@WH - QOFFFH
RAM2: 0l@09H - O@L7FFH
socket name address range when using 8K byte RAM
RAM@: @900dH - OGLlFFFH
RAM1: J2000H - @3FFFH
RAM2: G4000H - @SFFFH

({Note: The wunderlined address ranges show the ranges for the
standard configuration of the MPF-I/88.)

2.4 What Input/Output Devices Does the MPF-1/88 Include?
The devices that the system includes are:

Buzzer: The buzzer can be controlled by the user to make tones of
different pitches. It also generates sounds when storing data
onto the tape. -

pisplay: The display of the machine is a dot matrix LCD (liquid
crystal display).. Its physical format is 20 characters by 2
lines. However, the system software supports a 24-line logical
display. The display can show any two-line section of the 24-line
logical display at one time. You can use the key combination
ALT-A and ALT-Z to scroll up and down in the 24-line logical
display.

Keyboard: ' The keyboard has a total of 59 keys, including
alphanumeric keys (from A to Z, from @ to 9) and function keys.
The keyboard us@s rubber type contact technology.

Printer Port: The MPF-I/88 has a l6-pin Centronics printer port.

Audio Tape Interface: The machine can be connected to a monaural
cassette tape recorder to store data.

LED Lamp: There are two LEDs (light emitting aiode) to the upper
left of the keyboard. One is green and the other is red. The
function of the green LED lamp is similar to the buzzer. It
always illuminates when you load data into the tape. The red LED
lamp illuminates when the CPU executes the HLT instruction or the
system is in the HOLD state.

The Main Power Input

The MPF-1/88 uses a power adapter with a DC 9V 1A output. This
output will be converted to DC 5V by the power supply in . the
system unit. Be sure to connect the adapter to a power source
before you use the machine.

Expansion Interface

There are two methods for system expansion. One is the 64-pin
card-edge connector. Multitech will offer an expansion unit that
connects to the card-edge connector. The expansion unit includes
three 62-pin sockets for interfacing with IBM PC style expansion
boards and a 40-pin connector for interfacing with peripherals
developed for use with other members of the MPF-IP family.

In addition, we have reserved a place next to the edge connector
for a 62-pin H connector. You can solder a slot on the reserved
place, and then plug an expansion board into the slot.

»ﬁu Al Al

EAR
MPF-1/88
PB8403110-1

RAM2

ROM1

ROM2

JPS

4K OFF
16K oM

LAS2 1) .:

ﬁua oj

m»u —wA— (C37C38

T .
E Entering and
e EEEEaummms Executing a Sample

AEEE e EEEsRy
ERBRE seTmEa™ Program

3.1 A Sample Program
We will assume, when referring to the following example in this
chapter, that you are sitting at your MPF-I/88, have turned on
the system, and have a basic familiarity with 8088 assembly
language.
Here is our first assembly program. It calculates the sum of rall
the integers between 1 and 1@ and then prints the total on the
screen. Type it into the machine as a first example of using the
MPF-I/88 to see what happens during typing according to the
following statements once a prompt '>' is shown on the screen.
The below characters with boldface type should be typed in by
you, others are prompted by the system.

>l

>A 0080:0

¢080:0000 MOV AX,0

$@80:0903 MOV CX,64

gp89:09006 ADD AX,CX

¢08¢: 0008 LOOP 0686

Pp80:0Q90A INT 10

¢g080:0900C INT 7

0@80: GOOE

>l

After vyou have typed in the command and the cariage return Rey,
the LCD display will show:

e
>

But that is not the sum of all the intergers from 1 to 1¢@. Now
press ALT~A (Press the A key while holding down the ALT keyt .
What will you see on the LCD display? Does it look 1like the
picture below:

13BAProgram terminat
e .

This message tells vyou that the program has been terminated
and the result of the program, which is 13BA. However, you get
the answer of 5050 by adding all the integers ranging from 1 to
196. Why does MPF-1/88 return the value 13BA as the answer?

This number is in hexadecimal, or base 16. It is equal to 5650 in
decimal, or base 14. A

Note that the answer will be scrolled off the top of the screen
once the program is executed, whereas it doesn't mean that the
answer has been lost. You can press the ALT key while holding
down the A key to scroll up the screen. Please refer to section
5.2.2, the Display Buffer, for more details.

Now 1let wus 1look at it more closely. The first 1line of our
example:

>H

This line will be always displayed on the screen by the system
each time you power up the machine or after you have executed a
program. It means that the system is waiting for you to enter a
monitor command. The ">" symbol is referred to as the monitor
prompt character. The symbol "W" is called the cursor, and is
always displayed on the screen to show your current typing posi-
tion.

The second line of the example is:
>A 0080:0

This line 1is an example of a monitor command. The symbol "A"
tells the system to enter the line assembler; and the number
"g@80:0" tells the system where your program is to begin (i.e.,
the starting address of the program to be entered). The symbol

represents the carriage return key. It must be entered to
terminate a command and tell the system to execute the command
you have just typed. Note that the blank between "A"™ and "0080:0"
is optional.

Each time you enter an instruction and press the carriage return
key, the 1line assembler immediately translates the instruction
into machine code and prompts you for the next line with a number
that will be the address of the next instruction. You can leave

3-2

the 1line assembler and return to the monitor prompt ">" .by
pressing return without typing any instruction first.

Now let wus look at the first line of the main body of the
program:

gg80:00080 MOV AX.,0

The number "@080:008006" is typed on the screen by the system after
you enter the command "A @08@:8" as described above. The instruc-
tion "MOV AX,0" following the number "0080:000¢" means to move
the 16-bit quantity @ (HEX) into the AX register which is some-
times called the accumulator.

Because this instruction will occupy 3 bytes of memory, the
system will prompt with "0@80:090063" in the next line after you
press the carriage return key.

The second line of the program is:
g980:0083 MOV CX,64

This instruction is used to move the 16-bit quantity 64 into the
CX register referred to as the count register. All numbers used
in the 1line assembler are in hexadecimal; thus 64 hex = 100
decimal. The CX register is typically used to control the number
of iterations a loop will perform and will be also decremented by
loop operations. Because we want to calculate the sum of all the
integers between 1 and 1060, we need to loop 1060 times.

The third line of the program is:
g@80:0086 ADD AX,CX

This instruction is used to add the contents of the CX register

to the contents of the AX register, and store the result into the
AX register.

The fourth line of the program is:
P080: 00068 LOOP @006

This instruction decrements the CX register's contents by one
each time the instruction is executed. Then, the microprocessor
‘'will check if the CX register has been decremented to @. In our
example here, if the content of the CX register is greater than
@, control will be transferred back to the ADD instruction at the
address specified by the operand 0006 in the LOOP instruction.

Otherwise, the next instruction "INT 10" is executed. Let us go
ahead with the fifth line of our program:

g080:0006C INT 10

The mnemonic INT shown above is called an interrupt. In our
program, the instruction INT 14 means that we are going to output
our answer (13BA) onto the screen via a service program which is
stored in ROM and the function of which is to write the contents
of the AX register onto the screen.

The sixth line of our program is: -
g080:0GOE INT 7

The instruction means that control of the system is tranferred
from the program to the Monitor. All program should end with this
instruction.

The last line of our program is:

6080: 00OE

Since you have already typed in the last line of the program, at
this point you should simply press = in order to return to
the monitor prompt.

All the contents of the RAM memory, such as the program you just
typed in, will disappear when you turn off the MPF-I1/88. There-
fore, 1if you would like to keep the program for future use, you
can store it onto tape. The next chapter will introduce you what
kinds of commands you can enter for storing data in memory onto
tape and for loading the data on tape back into memory.

3-4

Using a
AmEEEEmmEn T ape Recorder
I N O R O A

EEENEENENNE .- MPF-1/SS8

4.1 Recording on Tape

We assume that you have gone through the previous chapters on the
system configuration, and know where the phone jacks for the tape
recorder reading and writing are.

The following procedure will show you how to record your program
on tape:

1. First, plug one end of the recorder cable to
the MIC (microphone) jack on the system board
and the other end to the MIC jack of the tape
recorder.

2. Place a cassette in the tape recorder, rewind
it, and then play it until you are past the
leader. If your recorder has a counter, allow
it at least five counts.

3. Put the tape recorder in the record mode, and
set the voice volume control switch to a me-
dium position.

4., Then, enter the command W (for write) follow-
ing the prompt >. Refer to the following
example:

>W ©080:0 $U8G:E /'TEST'

[Command] [Range of memory] [Filename] [Carriage Return

Note:
The W command is described in detail in
section 5.3.17. After the carriage
return key is pressed, the machine will
write data from the RAM memory to the
cassette. The file is stored on tape
with the file name 'TEST'

54 You will hear the sounds used to encode your
program on tape coming out of the speaker.

6. When recording has been completed, stop the
recorder.

4.2 Loading from Tape
To load a program from tape, follow the following procedure:

1. First, plug one end of the recorder cable to
the EAR (earphone) jack on the system board
and the other end to the EAR jack of the tape
recorder.

2. Place the cassette storing the file which you
are going to use in the tape recorder and
rewind it to the beginning.

3. Enter the command R (for read) with the file
name following the prompt >. Refer to the
following:

>R /'TEST'/

|[Command] [Filename|] [Carriage Return|

Note:
The R command is described in details
in section 5.3.18.

4. Place the tape recorder in the Read Mode by
depressing PLAY.

5. Then, press the key. The machine will
now begin reading data from the tape to its
RAM.

6. When the program has been completely loaded,
turn the tape recorder off.

Monitor
Commands

The monitor 1is a very powerful and easy to use program that
allows you to communicate interactively with the MPF-I/88. You
have already been shown examples of the use of some of the
monitor commands, such as A and G. This chapter gives you a
detailed explanation of the use of each of the monitor commands.

5.1 Functions of the Monitor Program

1. Directly assemble 8088 instructions from mnemonic form
to machine code by line.

2. Automatcally detect the bugs of the program written by
you.

3. Set up to 3 breakpoint addresses at which the program
will stop temporarily when executed.

4, Display and change memory contents.
5. Display and change register contents.
6. Find a certain string of charaters.
7. Delete a block of data in memory.

8. Insert a block of data in memory.

9. Load and store memory to and from a cassette tape
recorder. ¥

19. 2Allow a CRT or other kind of terminal to be used as the
control console (including the keyboard and the monitor)
of the MPF-I/88.

5.2 Syntax Notation

The following syntax notation is used throughout chapter 5 in
descriptions of the monitor command systax:

[1 Square brackets indicate that the enclosed
entry is optional. i

< > Angle brackets indicate data or address you
must enter.

D)

++ese. Ellipses indicate that an entry may be
repeated as many times as needed or desired,

All other punctuation, such as colons, slash marks, and apostro-
phe signs, must be entered exactly as shown.

5.2.1 Specifying address when using the monitor

In the following descriptions of monitor command usage, whenever
the parameter "addr" appears, it stands for address, and can be
entered in either one of the following two forms:

Offset or Seg:0ffset
e.g. Y] or 9080:0
The abbreviation "Seg" stands for segment. The 8088 microproce-
ssor features a segmented memory architecture in which effective

addresses are formed by adding a segment address to 4n offset
address within the segment according to the diagram below:

g 084060 Segment Address
+ 0 0 1B Offset Address
g 6 8 1B Effective Address

If when entering an address while using the monitor you specify
only the offset address, the monitor will use the current default
segment address. You can use the abbreviations CS:, DS:, SS:, and
ES: as the segment address in an address parameter to instruct
the monitor to use the current contents of one of these registers
as the segment value. You will probably find that unless you
write very large programs with the MPF-I/88, you will find it
most convenient to let the CS register point to the beginning of
your program and deal only with offset address values when using
the monitor. By the way, you can also use the segment override
mnemonics to replace the segment value for convenience, such as
Ccs, DS, ES, and SS.

When you turn on the MPF-I/88 and the monitor is initialized, the
default segment value will be @088. It is recommended that when
using the monitor and line assembler, you use segment values
greater than 0080, Otherwise, you may overwrite data areas used
by the monitor.

5.2.2 The Display Buffer

The display buffer is an area in the system memory. It is stored
with the information to be displayed on the 1logical screen.
Since the 1logical screen of MPF-1/88 is 20 characters by 24
lines, you can visualize the display buffer as a block of memory
illustrated as follows:

20 Characters

TALT-A
€«— window
lALT—Z

24

Lines

The physical display (2@ characters by 2 lines) can be visualized
as a window (or the view finder of a camera) that allows you see
any part of the logical screen. You can move the window upward to
see the upper portion of the logical screen or move the window
downward to see the lower portion of the logical screen.

ALT-A

When you move the window upward, you are actually scrolling down
the 1logical screen. The window can be moved upward by pressing
ALT-A.

ALT-Z

When you move-the window downward, you are actually scrolling up
the logical screen. The window can be moved downward by pressing
ALT=-Z.

You can always wuse ALT-A and ALT-Z to move the window to a
desired location to see a desired portion of the logical screen.
To return to the 1location where the cursor was previously
located, you can type any key on the keyboard.

5.2.3 Editing a Command Line
The Command Line Buffer

When you enter a command line, the command line is actually

stored in an area in the system memory. That area is denerally
referred to as a command line buffer. The length of the command
line buffer is 80 bytes. You can visualize the command line

buffer as 86 consecutive memory locations as illustrated in the
diagram below:

1 203456 17 - yia 80
SEEEERE Iy . IR
:; 2} 2
1 byte
12 3 4 20 characters
[>
ICR}

The first byte of the command line buffer is used to stored the
monitor prompt character ">". The last memory location of the
command buffer only accepts the ASCII code for the carriage
return key. Thus, the command buffer can accept a maximum of 78
characters (or bytes of information).

Editing Functions

MPF-I/88 monitor program provides editing functions so that when
you made a typing error inadvertently in a long command line you
don't have to re-type a whole command line.

The editing functions are supported using four. special function
keys: Fl, F2, SHIFT-F1l, and SHIFT-F2. ®

The following is a brief description of these function keys:

Fl: Copy one character.

F2: Copy all the remaining characters in a command line.
SHIFT-Fl: Insert character.

SHIFT-F 2: Delete character.

As you get more and more familiarized with the monitor commands,
you may quite often find yourself entering the same command lines
or a command line that is similiar to a previously entered com-
mand line.

In this case, you can use Fl and F2 to copy a character or the
characters which you have already typed into the command 1line
buffer.

We will use some examples to make it easier for you to understand
the use of these special editing function keys. But before
showing the examples, it is worthwhile to see how the monitor
handles these function keys.

Each time a key is pressed, the monitor will determine if it is
one of F1, F2, SHIFT-Fl, and SHIFT-F2, if one of these keys are
entered, an editing function is invoked. Each time an editing
function is invoked, the monitor will copy the contents of the
command line buffer into a temporary working buffer so that
contents of the temporary working buffer can be edited.

The monitor maintains an internal pointer which always point to
the location where the cursor is currently located. 1In other
words, the position of the internal pointer corresponds to the
position of the cursor. Any time a change is to be made in the
temporary working buffer, the cursor should be moved to the
location where the change is to be made. As soon as a change |is
made in the temporary working buffer, the n=2w coutents of the
temporary working buffer is sent back the command line buffer so
that the new command line can be executed.

Example 1 -- F2

1. Suppose you want to examine the contents of the memory range
starting from memory location ¢ through 5. You can type in the
command line as follows: ’

>M 6:0 5

After the carriage return is pressed, the contents of the
specified memory range will be displayed.

2, F2
At this time, if you want to examine the contents of the same
memory range again, you can simply type the function key F2.
After F2 is pressed, the screen will automatically display:

>M 0:8 5

At this point, you can press the carriage return key to have
the screen display the contents of the specified memory range.

If you want to try function key Fl, continue with the next
example, But at this time don't press any key on the keyboard
. until you are told to.

Example 2 -- F1°

If you want to examine the contents ofAmemory location '@ through
19, you have two ways to save time. One of them is to use the Fl
key.

Copy one character at a time

l. Once Fl is pressed, the contents of the current command line

buffer (M 0:0 5) are copied to the temporary working buffer,
and the internal pointer is moved as illustrated:

F—————————-Internal Pointer

>|M Gl:|@ D] svdeoie

*** Temporary Working Buffer ***

2. At this time you can press Fl to copy the character M to the
command line buffer. Pressing Fl1 repeatedly will copy the
entire command 1line M 0:0 5 into the command line buffer.
Sincé we want to enter the command M @:0 10, you can Fl until
the screen shows:

>M 6:0
I-—————--~This is where the cursor is positioned.

At this point you can type 1 and 9 on your keyboard so that
the display becomes:

>M @:0 19

3. Pressing the carriage return key at this time will cause the
contents of memory locations @ through 10 to be displayed.

Copy the whole command line

A second way to enter the command line M 8:@ 19 is to use the
function key F2 to copy the whole previously entered command line
into the temporary working buffer, update the contents of the
temporary working buffer, and then copy the updated command line
from the temporary working buffer to the command line buffer.

1. Suppose the previously entered the command line is M @:8 5.
You can type F2 to copy the whole previously entered command
line into the temporary working buffer. Once F2 . is pressed,
the screen display will show:

>M 0:0 5

2. You can press the backspace key to delete 5 in the command
line. After pressing the backspace key, the display will
become:
>M 0:0

3. Now you can .press 1 and @ to update the command line.

4, After pressing the carriage return key, the contents of memory
locations @ through 10 will be displayed.

If you want to try function key SHIFT-Fl, continue with the
next example. But at this time don't press any key on the
keyboard until you are told to.

Example 3 -- SHIFT-F1

SHIFT-F1 (hereafter referred to as S-Fl) is wused to insert
characters in a command line.

Suppose the current command line buffer is stored with the com-
mand line M @:0 19, and you want to examine the contents of
memory locatioms 20@H through 250H.

1. The. first step is pressing Fl repreatedly until the display
shows™

>M o:1

2. Type S-Fl so that characters can be inserted into the command
line.

3. Type 2 and 0. At this time the temporary working buffer

becomes:
re——————-—Internal Pointer

>IM gl:12]|@ STl

*** Temporary Working Buffer ***

4, Type Fl until the screen becomes:
>M 9:200 l
S. Type 2, 5, and §, The LCD display will show:

>M 0:200 250 .

At this time, the command line buffer is stored with this
updated command line. After the carriage return key is

. pressed, the contents of memory locations 2086 through 250 will
be displayed.

Example 4 -- SHIFT-F2

SHIFT-F2 (hereafter referred to as S-F2) is used to delete
characters in a command line.

At this moment the current command line buffer is stored with the

command line M 0:200¢ 258, and you want to examine the contents of
memory locations 2@H through 50H.

l. The first step is pressing Fl repreatedly until the dispiay
shows:

>M 0:20
2, Type S-E2 so that characters in fhe temporary working buffer

(command line buffer) can be deleted. At this time the tempo-
rary working buffer becomes:

’—-—Internal Pointer

>IM g1:121|0 s atians

*** Temporary Working Buffer ***
3. Type Fl. Now the display has changed to:
>M 9:20 B

At this time the temporary working buffer becomes:

[————-Internal Pointer

>IM g1:121|0 215|0

*** Temporary Working Buffer ***
4, Type S-F2 to delete 2.
5. Type F2 to copy the remaining characters in the ﬁemporary
working buffer into the command line buffer. At this time, the
display becomes:

>M 0:20 50

Pressing the carriage return key at this point will cause the
contents of the memory range specified to be displayed.

5.2.4 Moving the Cursor in the Command Buffer

Suppose you want to make changes to some locations in the command
line buffer that are already keyed in but not currently shown on
the window (the physical display). What are you going to do?

The MPF-1/88 monitor program allows you to move the cursor to a
desired location in the command buffer and make changes using the
special editing function keys as described previously.

To move the cursor, you can use the cursor movement keys. They
are: ALT-E, ALT-S, ALT-D, and ALT-X.

To move the cursor up one line, type E while holding down the ALT
key. ALT-X is used to bring down the cursor one line.

ALT-S is used to move the cursor left one position, 'while ALT-D
is used to move the cursor right one position.

It seems that the functions of these cursor movement keys are
difficult to remember. But look at the following chart (which is
generally referred to as a cursor movement diamond) and then
study where the keys E, S, D, and X are located on your keyboard.

ALT-E
ALT-S ALT=-D

ALT-X
Suppose the cursor is located in the center, you will find the E
key is located exactly one line up the cursor and the X key is
one line down the cursor. Now it is easy for you to remember the
functions of the cursor movement keys by referring to their

relative positions on the keyboard.

If you want to return the cursor to its position where it was
located originally, simply type ALT-F (F for FAST).

5.2.5 Internal Pointers

The monitor program maintains several pairs of internal pointers
to point to the memory locations which are currently accessed or
to be accessed by some monitor commands. A pair of internal
pointers are neécessary to point to a specific memory location
with one pointer pointing to the code .or data segment and the
other pointing to the offset address of that memory location.

An internal pointer itself is actually a specific memory location
whose contents are set to a specific value by the monitor program
during system cold reset but can be changed by entering a command
parameter when you use a monitor command which allows you tq
alter the contents of the internal pointer.

Each internal pointer is identified with a label, which can be
found in the monitor program source listing.

Take the monitor command A for example. It uses two internal
pointers, A _TEMP CS and A_TEMP IP. Upon system power-up, the
value of the internal pointer A_TEMP CS is set to 80H, while the
value of the internal pointer A _TEMP IP is set to @. If you want
to change the contents of these two pointers so that the two
pointers will point to the memory location you desire, you can
achieve that purpose by specifying the desired values as command
parameters.

In fact, wupon system power-up the contents of each pair of
internal pointers is set the same way as the pair of internal
pointers for the A command is initialized.

The L command uses I_TEMP_CS and I_TEMP_IP as its internal
pointers. Upon system power-up, the contents of I_TEMP CS are
set to 80H, while the contents of I_TEMP_IP is set to 0.

Some monitor commands uses common internal pointers. These
commands are B, D, F, I, M, and T. They use the internal pointers
-- TEMP_DS and TEMP_DP.

5.2.6 Monitor Command Listing

No. Corﬁmand Command name Page Location
3 51 A | ASSEMBLE | 5-12
A —
2% L | DISASSEMBLE | 5-13
Qg gy g gy g g S S U USRS
3 | G | GO | 5-17
y ——
4 | [| STEP | 5-18
5 | B | BREAKPOINT | 5-20
6 | C | CANCEL | 5=-22
T -1 X | REGISTER | 5-23
8 | M | MEMORY | 5-24
9 | 1 | INSERT | 5-28
b ——————————————— - - - - - - - - - — - — - - - — - — - ————
19 | D | DELETE | 5-31
11 | F | FIND | 5-36
12 - J | JUMP | 5-38
et e oo Bt o BEE S TER B ke BRI e B e e
13 7 T | TRANSFER | 5-39
14 | P | PAUSE | 5-41
1S | N | INPUT | 5-41
16 | 0 | OUTPUT | 5-42
17 | E | EXTEND | 5-43
18 | W | WRITE | 5-44
19 | R | READ | 5-45

5.3 Explanation of the Monitor Commands

Part A — The Line Assembler and Disassembler

5.3.1 Command A — Enter the Line Assembler

Name: ASSEMBLER
Purpose: To let the user key 8088 assembly language
programs into memory and assemble them into

machine code line by line.
Syntax:

(1) a

(2) A <addr>

Comments:

Examples:

addr:

You can use this commnand to enter 888 assem-

bly language program into the memory of the
MPF-I1/88., To leave the line assembler and
return to the monitor prompt ">", press the

carriage return key without typing an instruc-
tion.

If there 'is no address parameter used with the
A command, as shown in syntax one above, then
the monitor will use the current contents of
the CS register (which has a default value of
0080) and the default offset value of @ to
determine the starting address of your
program. By the way, the address can be speci-
fied as either an offset address of a segment
address plus an offset. Please refer to sec-
tion 5.2.1 for a complete discussion.

1. >a
#380:0000 CLD
9g80:9001 MOV SI,1l0 ;NUMBER 10 IS HEX
¥0809:0004 LODSB
@080 :0095 CMP AL,0
2080:0907 JZ D ;D IS AN OFFSET, SEE "INT 7" BELOW
$@8B:0009 INT 9 ;OUTPUT A CHARACTER AT A TIME
9080 :000B JMP 4 ;4 IS AN OFFSET, SEE "LODSB" ABOVE
¥980:000D INT 7 s RETURNING CONTROL TO MONITOR
@080 :090F NOP ;NO OPERATION
¥080:091@ DB 'MICROPROFESSOR I/88'
¥080:0023 DB @

5-12

>A 20
¢0980:0028 CLD
098G:0621 MOV SI,30 ;NUMBER 3¢ IS HEX
7080:9024 LODSB
0@86:0825 CMP AL,D &
g080:0027 JZ 2D ;2D IS AN OFFSET, SEE "INT 7" BELOW
0080:0029 INT 9 .;OUTPUT A CHARACTER AT A TIME
$080:002B JmP 24 ;24 1S AN OFFSET, SEE "LODSB" ABOVE
9@80:902D INT 7 s RETURNING CONTROL TO MONITOR
@g080:302F NOP +NO OPERATION
0¥80:0030 DB 'MICROPROFESSOR I/88'
g080:06043 DB 0
>A 90:0
or if the CS code segment register contains @0@9¢
>A CS:0
¢690:0000 CLD
g090:00081 MOV SI,1l0 ;NUMBER 10 IS HEX
P0906:0004 LODSB
@g090:0005 CMP AL,O
g090:00087 JZ D ;D IS AN OFFSET, SEE "™INT 7" BELOW
0@90:0089 INT 9 ;OUTPUT A CHARACTER AT A TIME
@@90:0096B JMP 4 ;4 IS AN OFFSET, SEE "LODSB" ABOVE
g@906:900D INT 7 ; RETURNING CONTROL TO MONITOR
@d99:000F NOP ;NO OPERATION
9@90:001¢ DB '"MICROPROFESSOR I/88"'
909@:06023 DB O
5.3.2 Command L — Enter the Disassembler
Name: DISASSEMBLER
Purpose: To translate (disassemble) a block of machine
codes 1in memory into 8088 assembly instruc-
tions.
Syntax: g
(1) L
(2) L <addrl>
(3) L <addrl> /<n>

(4) L <addrl> <addr2>

Comments:

Suppose that you have typed in a segment of
instructions or an entire program by using the
A command. As we mentioned before in section
5.3.1, the monitor will automatically assemble
them into machine codes. At this point, you

addr#:

may Wwonder if the monitor assembled your
program correctly. You are recommended to
utilize the L command to have the monitor
disassemble all of the converted machine codes
into their original instructions.

This command helps you translate as many bytes
of machine codes stored in memory as you want

*into their corresponding original 8088

assembly instructions. For convenience, we
provide this command with a default amount of
32 bytes of machine codes to be converted,
please refer to syntax 1 that follows.

In all cases, the amount of bytes of machine
codes disassembled and displayed on the screen
may’ be slight more than the one requested or
the default one. This is because instructions

are of wvariable length. Thus, when this
command ends up with the first byte of the
last instruction requested, it will

disassemble the rest of bytes that instruction
owns as wall,

Mor2ovar, be sure that the address parameters
point to memory locations containing valid
8088 machine codes. If you specify an address
that does not contain the first byte of a
valid instructin, the Jdisplay on the screen
will be erroneous.

Each address can be specified as either an
offset address or a segment address plus an
offset. Please refer to section 5.2.1 for a
complete discussion.

Represents the number of bytes of machine
codes to be disassembled. It is a hexadecimal
number .

Syntax 1

This command will translate into assembly
instructions the default 32 bytes of machine
codes from the address pointed to by the
internal pointer used by the monitor.

Syntax 2

This command will translate into assembly
instructions the default 32 bytes of machine
codes from the address pointed to by the
address parameter <addrl> specified in the
command.

Examples:

1. Assume that the following instructions and their corresponding
machine codes exist in memory: t O

Instructions: Machine Codes:
g0840: 008@:

0368 POP AX ; @068 58 BO FF BA
9¥@9l MOV AL,dFF PG4 60 G1 EE BO
¢gPB3 MOV DX,0160 gog8 87 98 D8 BA
¢g@@6 - OUT DX,AL PPBC 80 @1 EE BA
¢g@47 MOV AL,7 9018 C@ @1 EC D@
gog9 OR AL,BL g0l4 C8 @0 00 00

¢90gB MOV DX,0180
@P0GE OUT DX,AL
gU@F MOV DX,01C0O
g9l2 IN AL,DX
#@313 ROR AL,1l

Assuming that the internal pointer used by the disassemble
command contains 0080:0000, entexr the following command:
(before entering the command that follows, you are recommended
to read section 5.3.14 for the P command to adjust the speed
of displaying on the screen.)

>L

The system will respond with

0080:

@P@e POP AX

ga31L MOV AL,FF

@083 MOV DX, 0160

0066 OUT DX ,AL

9087 MOV AL,Q7

@g@9 OR AL,BL

g@0B MOV DX, @180

@gOgE OUT DX; AL

G@AF MOV DX,01C0

g@312 IN AL, DX

@613 ROR AL,1

@915 ADD [BX+SI], The valid machine language codes
AL of this program only takes up 21

@917 ADD [BX+SI], bytes, since the L command disassem-
AL bles 32 bytes of machine codes, the

@919 ADD [BX+SI], remaining 12 bytes are also disassem-
AL bled. Because the contents of the

@@1B ADD [BX+SI], wunused memory locations in system RAM
AL are set to zeroes during system ini-

@61D ADD [BX+SI1], tialization, and zeroes in consecutive
AL memory locations are disassembled to

@@1F ADD [BX+SI], the instruction ADD [BX+SI],AL, the
AL remaining 12 bytes are all disassem-

bled to this inst;pction.

5=15

2. Taking the

3.

assgmption of example 1 for instance, enter the
following command:

>L 9@80:0066

or

>L 80:6

The system will' respond with

9380:
2006
gae7
9009
g0@B
9O0E
GO0F
ga12
9a13
PB15

0e17
@019
gd1B
0a1D
Ga1F
po21
GGéB

#a25

Once again

ouT
MOV
OR
MOV
ouT
MOV
IN
ROR
ADD
AL
ADD
AL

ADD

AL
ADD
AL
ADD
AL
ADD
AL
ADD
AL
ADD
AL
ADD
AL

DX AL
AL, 87

AL ,BL

DX, 0180

DX, AL

DX,01C@

AL, DX

AL,1l

[BX+SI], <-- Not part
[BX+SI],

[BX+S1],

[BX+S1],

[BX+S1],

[BX+S1],

[BX+S1I],

[BX+SI],

[BX+SI],

based on the assumption

following command:

>L 80:0 /14

The system will respond with

po89:
6o00
gaa1
0093
3006
gae7
9099
0oeB
POOE

POP
MOV
MOV
ouT
MOV
OR

MOV
ouT

AX
AL,FF
DX, 0160
DX,AL
AL,07
AL,BL
DX, 0180
DX,AL

of our program

of example 1, enter the

@OGF MOV DX, 81C0
@912 IN AL, DX
@313 ROR AL, 1

4. Once again based on the assumption of example 1, enter the
following command:

>L 86:0 80:14

The system will

respond with

2080:

g@ed POP AX

gee1 MOV AL,FF
@083 MOV DX, 0160
@986 OUT DX, AL
@007 MOV AL,07
@989 OR AL,BL
g@gB MOV DX, 0180
@O@E OUT DX,AL
g@gF MOV DX, 01C@
@012 IN AL,DX
@613 ROR AL, 1l

Part B — Program Exacution Commands

5.3.3 Command G

Name: GO

Purposes:

Syntax:

Comments:

addr:

— Execute a Program

To execute a program in memory

(1) G
(2) G <addr>

The address can be specified as either an
offset address or a segment address. plus an
offset. Please refer to section 5.2.1 for a
complete discussion.

If no address is specified as in syntax 1
above, the monitor will wuse the current
contents of the CS register as the segment
value and the current contentss of the
instruction pointer (referred to as 1IP) to
calculate the address at which to begin
execution. Execution will continue until a
breakpoint is encountered or until the program
terminates.

Examples:

l'

3.

-Suppose that the user code segment register CS contains 00680

and the instruction pointer IP contains @066, and let us
example 1 of the A cmmand to ahead with the following
description, The command s

>G

will cause execution to, begin from the address 0080:0800¢ and
then the program will print "MICROPROFESSOR I/88".

Suppose that the user CS contains 0080. Let us use Example 2
of the A command to go ahead with the following description.
The command

>G 20

will cause execution to begin from the address 0080:002¢ and
then the program will print "MICROPROFESSOR I/88".

Let us use example 3 of the A command to go ahead with the
following description. The command

>G 9@:0
or
>G CSs:¢
will cause execution to begin from the address 09090:0000 and
then print the message as defined in the program.
5.3.4 Command S — Execute a Program step by step
Name: STEP
Purpose: To singel-step a program or execute a speci-
fied number of instructions and then stop with
a display of register contents on the screen;
execution starts from the address pointed to
by the code segment CS register and the 1IP

instruction pointer.

Syntax:

—~—

~—
nnn
o}

Comments:
If no parameter is sSpecified in the S command
as listed in syntax 1 above, then the monitor
assumes that the program is to be single-
stepped.

Examples:

l‘

Note that in the command syntax 2 listed
above, the parameter n specifies the number of
instructions which will be executed after the
S command has been entered.

Before wusing this command, be sure that the
contents of the CS and IP registers point to
the address you desire. Please refer to the
description of the X command given in section
5o 3inil for instructions on displaying and
altering register contents.

After an instruction or the specified number
of instructions have been executed, the pro-
gram will be halted and register contents will
be displayed. Because of the screen size, only
two registers and the next instruction to be
executed will be displayed at a time. At this
time, you can type CTRL-A or CTRL-Z to scroll
the screen. Typing S will cause program execu-
tion to begin from the instruction which is
displayed on the last line of the logical
screen and the dsiplayed register contents to
to updated. Pressing the return key will re-
turn you to the monitor prompt ">".

There are 14 registers that can be displayed
on the screen: AX, BX, CX, DX, SsI, DI, IP, SP,
FL(flag), BP, CS, DS, ES, and SS.

Every time you enter the S command, the green
LED to the upper left of the keyboard will
flash once to indicate that the monitor has
accepted it and executed an instruction.

Suppose that CS=5d34 and TP=0000. Let us use again the sample
program in chapter three to go ahead with the following des-

cription. As

long as you press the S key with the carriage

return key at the keyboard as follows:

>s [=]

the system will respond with the following messages:

AX=0000
CX=0000

At this point,
will display
follows:

SI=0000¢
IP=0083

BX=0000
DX=00009

assume that you press CTRL-%; then the system

the contents of the next four registers as

DI=0000
SpP=0800

3. If you p
following:

FL=F0@2
CS=04980

ress

CTRL-Z again, the screen will display the

BP=0009
DS=0080

4, Press CRTL-Z again, the screen will display the following:

Cs=0080
ES=0080

DS=0080

S=0080

5. Press CTRL-Z again, the screen will display the following:

ES=0080
g@@3 MOV

S5=0080

CX,0064 (Instruction to be executed next)

6. Now, if you press CTRL-A 3 times and type S again, the screen

will show:

SI=0004d
IP=0806

Part C — Debugging

DI=0000
SP=0800

5.3.5 Command B — Set/Show Breakpoints

Name:

Purpose:

Syn

Comments:

tax:

addr:

BREAKPOINT

To set up to three breakpoints or display
their current settings. When a program is - on
execution and runs into a breakpoint address,
the program execution will be halted.

(1)'B
(2) B <m>
(3) B <n> <addr>

This command allows you to set up to three
addresses in your program as breakpoints. It
can ‘also display the breakpoints you have set
currently in a program, Breakpoints are a very
useful debugging tool that allows you to stop
your program at specific locations to allow
you to examine registers and memory contents.

The breakpoint number, ranging from 1 to 3,

An address at which the breakpoint is to be
set. Please note that breakpoints cannot be
set at addresses in ROM memory. By the' way,
the address can be specified as either an
offset address or a segment address plus an
offset. Please refer to section 5.2.1 for a

5-20

complete discussion.
Examples:
1. >B 1 90:9
This command sets breakpoint one aé the address 009¢:0009.

2. Assuming that . the CS register contains @688, entering the
following command:

>B 2 1B
will set breakpoint two at the address 0080:001B.
3. >B
This command will display all of the breakpoints you have set
currently in the system, such as the followings:

g1 9090:00609
92 9080:901B

Whenever you forget what breakpoints are in the system, use
this command to remind you.

Assume that there 1is a breakpoint set at 0080:0004. If vyou
started execution from location 0080:0000 (and the program didn't
first encounter some kind of branch instruction) you will see the
following message on the screen.

Break at 0080:0004
>H

At this point, execution is halted and the monitor is at the
prompt level waiting for you to type a command. You could type
"G" to resume execution (remember that CS and IP will be pointing
to the next instruction that was to be executed when the break-
point was encountered), "S" to do step execution for debugging,
or "X" or "M" to examine or change register or memory contents.

5.3.6 Command C — Cancel Breakpoints
Name: CANCEL

Purpose: To cancel one or all of the breakpoints set
previously. s

Syntax:
(1) C
(2) C <n>

Comments:
The command can be used to cancel one or all
of the breakpoints you have previously set in
the system. If you are finished with debugging
and want your program to run without interrup-
tion, you can use this method.

n: It is a number ranging from 1 to 3.

Syntax 1

This command will cancel all the breakpoints
set currently in a program.

Syntax 2

This command will cancel a breakpoint speci-
fied by <n> following the C command.

Examples:

l.

To cancel all the breakpoints set currently, enter:
>C

The system will cancel the breakpoints and return you to the
monitor prompt ">".

To cancel breakpoint three set currently in the system, enter:

> 3

The system will cancel the specified breakpoint and return you
to the monitor prompt ">".

5.3.7 Command X — Examine/Alter the Contents of Registers
Name: REGISTER

Purpose: To display or change the contents of any of
the registers.

Syntax:
(1) X
(2) X <registername>

Comments:
Syntax 1

This version of the X command allows you to
display the contents of all the registers.
After you enter the X command, the contents of
four registers will be displayed. By pressing
CTRL-Z, you can see the next four. Pressing
CTRL-A will bring back the previous four. By
pressing the return key, you can go back to
the monitor prompt.

All together thera are 14 registers that can
be displayed: AX, BX, CX, DX, s1, b1, IP, SP,
FL (flag), BP, CS, DS, ES, and SS.

Syntax 2

This version of the X command displays the
value of a single register and gives you the
option of replacing its contents with a value
you are to type in. See example 2 below for
details.

The valid <registernames> are:
AX BX CX DX

SI DI IPp SP
FL BP Cs DS

ES Ss

You can use this command to <change the
contents of any register among the above 14
ones.

Examples:

1. Show the contents of registers by entering the X command w1th
the carriage return key, such as:

>X

The system might respond with:

AX=0000 BX=0001
CX=0000 _ DX=FFFF
Note:

Depending on the current state of the system. You will
probably see different numbers.

At this point; you can either press CTRL-Z and CTRL-A to
display other registers or else press the carriage return key
‘to leave the X command and return to the monitor.
Assume that the CS register currently contains 9080 and that
you want to replace it with 0090. Enter the following
command:

>X CS

The system will respond by displaying the register name and
its current contents.

cs=g98¢0 M

The cursor (M) is staying on the same line. You can type in a

_number, in this case @090 or 90, and press the return key to

_change the contents of the CS register. Or, if you decide not

to change the value, you can press the return key without
typing anything and the CS register will be left unchanged.
5.3.8 Command M — Examine/Change the Contents of memory
Name: MEMORY

Purpose: To display or change the contents of a memory
location or a range of memory locations.

Syntax:
(1) M
(2) M <addrl>
(3) M <addrl> <addr2>
(4) M <addrl> <addr2> /<datal>/
(5) M <addrl> /<datal> [data2]/
(6) M <addrl> <addr2> /<datal> [data2]/

Comments:

The functions of this command can be divided
into three categories:

1. display (examine) or change the contents of
a memory location.

2. display (examine) or change the contents of

5-24

a range of memory locations.
3. fill the memory locations with values.

addr#: Each address can be specified as either an
offset address or a segment address plus an
offset. Please refer to section 5.2.1 for a-
complete discussion.

data$#: Represents any alphanumeric character or hexa-
decimal number. If. you use character data,
they should be prefixed with an apostrophe
('), such as 'ABCD. However, if you use hexa-
decimal data, the apostrophe is not needed.

Examples:

1.

Assuming that the current internal pointer contains $080:0000,
enter the following command:

>M

The system will automatically respond with the contents of
eight consecutive memory locations starting from the address
g@8Q: 00008 for you to inspect as shown below: (Assume those
memory locations contain zeros)

pe8a@:

ggod 00 900 00 90
0004 00 00 00 00
>

At this point, the contents of the internal pointer is
080:0008. If you enter the same comnand as above, the screen
will show:

0080:
0008 00 00 00 @00
g9eC 0w 00 00 @9

Assume that the current segment address of the internal
pointer is @08¢, and you intend to alter the contents of
memory location @@880:000A into 2B, enter: (Refer to syntax 2)

>M A
The system will respond with

g08Q:
gooa oo. I

and then keeps waiting for you to enter a value, 1in this case
2B. Pressing the return key following the value you desired
will return you to the monitor, However, if you press the
space bar instead of the return key, then the system will

5=-25

6.

display the contents of the next memory location as the form
shown above and waits for your decision.

Assuming that you want to take a look at a certain portion of
memory locations, enter: (Refer to the syntax 3)

>M (0080:0000 0080:000B
or
>M 80:0 89:B

or 1if the contents of the internal pointer segment address
equal 0980

> M 0 B

The system will display the contents of 12 consecutive memory
locations as follows: (Assume those memory locations contain
Zeros)

0080

0903 09 00 90 @9
0gg4 00 00 00 GO
g0@8 060 09 00 00
>

Assuming that you want to fill a portion of memory locations
with a particular value, enter: (suppose the contents of the
internal pointer segment address equal @080)

>M @ F /61/
or
>SM 6 F /'a'/

The system will store the hexadecimal value 61 in the memory
locations from (@8¢:0000 to G@380:300F

Assuming that you want to store one or more bytes of data into
a range of memory locations staring from the address specified
in the command, enter as follows:

>M 96:90 /33 44/

This command will have the following effect (but will not
cause the result to be displayed on the screen):

0090 :

0000 33 44 00 00
0004 00 00 06 00

Using the M command, you can also store a particular value or
a set of values into a defined range of memory locations., If

5-26

there are

less

values than the specified range of memory

locations, the set of values will be used repeatedly until the
end of the specified memory locations. Enter as follows:

>M 1¢6:8 168:F /33 44/

This command will have the following effect (but will not
cause the result to be displayed on the screen):

010@:

0000 33 44
0904 33 44
g0@8 33 44
@g29Cc 33 44

44
44
44
44

Part D — Examing or Altering Memory of Registers

5.3.9 Command | —Insert Data into Memory Locations

Name: INSERT

Purpose: To insert data into a memory location or a
.portion of memory locations.

Syntax:
(1)
(2)
(3)
(4)
(5)
(6)

o H

Comments:

/<datal> [data2]/

<addrl>

<addrl> /<datal> [data2]/

<addrl> <addr2>

<addrl> <addr2> /<datal> [data2]/

You can use this command to insert data into
memory. After you have performed the operation
of insertion, the contents of the memory loca-

tions

following the inserted data will be

shifted backwards automatically by the 1length
of data inserted.

addr#: Each

offset

address can be specified as either an
address or a segment address plus an

offset. Please refer to section 5.2.1 for a
complete discussion.

data#: represents any alphanumeric character or hexa-
decimal number. If you use character data,

they
("),

should be prefixed with an apostrophe
such as 'ABCD. However, if you use hexa-

decimal data, the apostrophe is not needed.

Syntax 1

This

value

command will insert one byte with the
zero into the memory 1location whose

address is pointed to by the internal pointer
of the current segment. All the original data
following the inserted data will be shifted
backwards one byte.

Syntax 2

This
data

command will insert one or more bytes of
into a portion of memory locations

starting from the address pointed to by the
internal pointer of the current segment. All
the original data following the last 1inserted

data

will be shifted backwards by the length

of data inserted.

5-28

Syntax 3

With the exception of specifing an address,
this command is identical to the syntax 1 in
function. You can use this command to insert
one byte of data with the value zero into a
memory location specifi=d by the address
<addrl> in the command. All the original data
following the inserted data will be shifted
backwards one byte.

Syntax 4

Wwith the exception of specifing an address,
this command is much similar to the syntax 2

in function. You can use this command to
insert one or more bytes of data into a por-
tion of memory locations starting with the
address specified by <addrl> in the command.
all the original data following the last
inserted data will be shifted backwards by the
length of data inserted.

Syntax 5

Same as syntax 1 in function, this command
inserts one byte of data with zero value into
memory location specified by the first address
<addrl> in the command. The original contents
of the memory locations up to and including
the second address <addr2> will be shifted
backwards one byte.

Syntax 6

Same as the syntax 2 in function, this command
allows you to insert one or more bytes of data
into a portion of memory locations starting
with the address specified by the first
address <addrl> in the command. The original
contents of the memory locations up to and
including the second address <addr2> will be
shifted backwards by the length of data
inserted.

Examples:

1. Assume that the following data exists:
90980:
goee 41 42 43 44

@904 G0 99 90 G4
gp08 00 @99 0B 00

Assuming that the internal pointer contains 0080:06000,

the following command:
1

The contents of these memory locations will be
shown below:

9380 :]

0900 @0 41 42 43
6004 44 00 90 90
0008 00 90 00 0B

Taking the assumption of example 1 for instance,
following command:

>I /'VW' 58 59

The contents of these memory locations will be
shown below: -

ga8a:

g09@ 56 57 58 59
G394 41 42 43 44
3308 0O 90 90 @0
gaeC 00 90 OB 00

Assume that the following data exists:

pe80a:

ge0e 3¢ 31 32 33
0004 41 42 43 44
0008 09 24 00 38

Enter the following command:
>1 0080:4

The contents of these memory locations will be
shown below:

0080:

9900 3¢ 31 32 33
0004 00 41 42 43
0008 44 00 24 00

Taking the assumption of example 3 for instance,
following command:

>I 0080:4 /A3 A4 A5/

changed

enter

changed

changed

enter

enter

as

the

as

as

the

The contents of these memory locations will be changed as
shown below:

0080 : 4

06060 3¢ 31 32 33
@604 A3 A4 A5 00
4008 41 42 43 44
600C 00 24 990

Once again usiné the the assumption of example 3, enter the
following command:

>I (¢080:4 G080:7

The contents of these memory locations will be changed as
shown as below:

0980 :

gae9 30 31 32 33
pog4 00 41 42 43
goe8 @9 24 @0 38

Once again based on the assumption of example 3, enter the
following command:

>1 0080:4 0680:7 /D1 C5 C6
The contents of memory will be changed as shown below:
q080:
9@oe 30 31 32 33
#9@4 D1 C5 C6 41
pog8 @0 24 00 38
5.3.10 Command D — Delete Data in Memory
Name: DELETE

Purpose: To delete a byte of data or a segmemt of data
in memory

Syntax:
(1) D
(2) D /<n>
(3) D <addrl>
(4) D <addrl> /<n>
(5) D <addrl> <addr2>
(6) D <addrl> <addr2> /<n>

Comments:
You <can use this command to delete a byte of
data or a block of data in memory. After you
have performed the operation of deletion, the
contents of the memory locations following the

5-31

addr#:

deleted data will be shifted forwards automa-
tically by the 1length of data deleted.
However, 1if you specify a second address in
the command, then the data between the end of
the range of deletion and the second address
will be moved forwards to fill the space. If
only one address is specified, all the data
from the end of the range of deletion through
the end of the current segment will be moved
forwards.

Each address can be specified as either an
offset address or a segment address plus an
offset. Please refer to section 5.2.1 for a
complete discussion.

Represents the number of data bytes you are
going to delete. It is a hexadecimal number.

Syntax 1

This command will delete one byte of data
whose address 1is pointed to by the internal
pointer of the current segment. All the origi-
nal data following the deleted data will be
shifted one byte forwards.

Syntax 2

This command will delete one or more bytes of
data specified by <n> in the command and the
the starting address of the data bytes to be
deleted is pointed to by the internal pointert
of the current segment. After execution of the
action of deletion, all the original data
following the 1last deleted data will be
shifted forwards by the 1lenght of data
deleted.

Systax 3

With the exception of specifing an address in
the command, this command is much similar to
the syntax 1 in function. You can use this
command to delete one byte of data whose
address is specified by <addrl> in the com-
mand. All the original data following the
deleted data will be shifted forwards one
byte.

Syntax 4
With the exception of specifing an address in

the command, this command is much similar to
the syatax 2 in function. You can use this

5-32

Examples:

command to delete one or more bytes of data.
The <n> in the command specifies the number of
bytes to be deleted and the starting address
of the data to be deleted 1is specified by
<addrl> in the command. All the original data
following the 1last deleted data will be
shifted forwards “by the 1lenght of data
deleted.

. Syntax 5

Same as the syntax 1 in function, this command
deletes one byte of data whose address is
specified by the first address <addrl> in the
command. The contents of the memory locations
up to and including the second address <addr2>
will be shifted forwards one byte.

Syntax 6

Same as the syntax 2 in function, this command
allows you to delete one or more bytes of
data. The <n> in the command specifies the
number of bytes to be deleted and the starting
address of data to be deleted is pointed to by
the first address <addrl> in the command. The
contents of the memory locations up to and
including the second address <addr2> will be
shifted forwards the length of data deleted.

1. Assume that the following data exists:

ao80Q:
00009
g0a4
0008
gaac

@7FC

Assuming

41
FC
B9
1)

/1Y)

CD @9
B8 @0
64 00
00 00

@A 0B

that

EB
00
g1
/1]

gc

the internal pointer of the current segment

contains 0980:0000, enter the following command:

>D

as

The contents of these memory locations will be changed
shown below: -
" 0080:
@999 CD @09 EB FC
@@04 B8 00 90 B9
ggg8 64 00 01 00
geocC 09 09 90 09
@7FC @A 0B @C @C
2. Taking the assumption of example 1 for instance, enter:

3.

4.

>D /2

The contents
shown below:

008d:
@godd @9 EB FC
Q@4 00 99 B9
008 00 01 00
@g@gecC 00 09 069
@7FC OB OC OB
Taking the
>D 80:8
The contents of
shown below:
0089
@g9@@ 41 CD @9
@0g4 FC B8 @0
ggo8 64 00 01
@00C 00 90 @9
g7FPC @A @B @C
Taking the
>D 86:8 /4

of these memory locations will be changed

ac

EB
09
10
2%}

gc

assumption of example 1 for instance, enter:

these memory locations will be changed

assumption of example 1 for instance, enter:

as

as

The contents of these memory locations will be changed
shown below:

o080

gapa 41 <D 09
go04 FC B8 09
0008 00 00 09
gg9Cc 09 00 09

| &

97F8 33 JA OB 4C
@7FC @9 @A 0B OC

5. Taking the assumption of example 1 for instance, enter:
>D 80:0 80:4

The contents of those memory locations will be changed
shown below:

0080

gge@ CD 89 EB FC
g9%4 FC B8 00 00
9968 B9 64 00 91
goeC 90 00 00 00

" o

@7rC 00 0A @B @C
6. Taking the assumption of example 1 for instance, enter:
>D 80:0 86:5 /3

The contents of these memory locations will be changed
shown below:

0080

0008 EB FC B8 EB
@334 FC B8 00 00
3038 B9 64 00 01
geeC 00 00 00 00

e o

@7FC @8 @A @B @C

as

as

5.3.11 Command F — Find A String of Characters in Memory

Name: FIND

Purpose: To search for a specified value or set of

values in memory.

Syntax:
(1) F /<datastring>
(2) F <addrl> /<datastring>

(3) F <addrl> <addr2> /<datastring>

Comments:

This command searches for a specified value or

set of values in memory and

reports the

address where they are found. If the value or
values being searched for occur many times in
memory, the system will display the address of
each occurrence on the screen. You can search
for the string you want from the beginning of
memory through the end of - memory, or Jjust
within a specified range of memory, depending

on how you enter the command.

addr#: Each address can be specified as

either an

offset address or a segment address plus an
offset. Please refer to section 5.2.1 for a

complete discussion.

datastring:

It represents any alphanumeric character or
hexadecimal number. If you use character data,

they should be prefixed with an

apostrophe

('), such as 'ABCD. However, if you use hexa-
decimal data, the apostrophe is not needed.

Syntax 1

This command searchs for the value,or values
specified by <datastring> in the command from
the memory location whose address is pointed
to by the current CS plus the internal pointer

all the way through the end of
segment.

Syntax 2

the current

This command searchs for a string specified by
<datastring> in the command starting from the
memory location whose address is specified by
the address parameter <addrl> in the . command

all the way through the end of
segment.

the current

This command searchs for the value or values
specified by <datastring> in the command
starting from the memory location whose
address is specified by <addrl> in the command
through the memory location whose address is
specified by <addr2> in the command.

Examples:

1. Assume that the following data exists in memory:

398@:

P03 41 42 43 44
9604 45 41 42 43
ge0d8 44 45 41 42
geeC 43 44 45 @0
0010 00 00 00 Q0

@g7r4 00 00 00 @0
@7F8 41 42 43 44
@7FC 45 00 00 060

Enter the following with assuming that the internal pointer of
the current segment contains 0080:0000:

>F /'AB
or
>F /41 42
The system will respond with:

@080
0000 9005 0O00A QG7F8

This means that the hexadecimal values 41 and 42 (representing
the ASCII characters 'AB') have been found together at the
above four locations. Note that the address given above is the
starting address of each occurrence of the string of values.
Taking the assumption of example 1 for instance, enter:

‘>F @686:8 /'CD

The system will respond with:

g080G:
Q38C @7Fa

3'

Again taking the assumption of example 1 for instance, enter:
">F @0¢80:8 ¢080:1A /'E
The system will respond with:

20809:
0009 QOQE

5.3.12 Command J — Move New Values into the CS and IP registers

Name: JUMP

Purpose: To directly jump to the particular address
from which you want to start program execution
next time.

Syntax:
(1) J <addr>

Comments:
If the address is specified as only an offset,
the offset value will replace the contents of
the IP register. If both the segment value and
the offset value are specified, then they will
replace the contents of the CS register and
the IP register respectively.

addr: The address can be specified as either an
offset address or a segment address plus an
offset. Please refer to section 5.2.1 for a
complete discussion.

Examples:

1

Assume that the current CS register contains @08¢ and IP
contains 900A; and you intend to change the contents of the IP
register into @@5C. Just enter:

>J @95C

After execution of this command, the system will retain the
original contents of the CS register and alter the contents of
the IP register into @@5C.

Assume that the current CS registér contains @088 and 1IP
contains #@23; and you intend to change the contents of the CS
register and the IP register into 0090 and 0000 respectively,
Just 2nter:

>J 96:0

Note:

You can achieve the same purpose of changing the contents
of the CS and IP registers by using the X commnand, such
as the XCS and XIP commands. For detailed descriptions

about that

both of commands, refer to the X command.

5.3.13 Command T — Copy the Contents of a Memory Range to a Specified

Area in Memory

Name: TRANSFER

Purpose:

Syntax:

Comments:

addgl:

addr2:

addr3:

addr4:

addr5:

To copy a range of memory contents to another
area in memory.

(1) T <addrl> <addr2> <addr3>
(2) T <addr4> <addr5> /<n>

Syntax 1

You can wuse this command to copy a range of
memory contents starting with <addrl> aad
ending at <addr2> in the command to a range of
memory locations starting at <addr3> in the
command.

the starting address of the raange of memory to
be copied from.

the ending address of the range of memory to
e copied from.

the destination address to which the range of
memory to be copied.

Syntax 2

This command has the exact same effect as
syntax 1., The difference between them is the
way in that the ranges of memory affected are
defined. In this command, the starting
address <addr4> of the range to be copied
from, the starting address <addr5> of the area
to be copied to, and the number of bytes to be
copied are specified.

the starting address of a number of data bytes
to be copied from.

the destination address to which a number of
data bytes to be copied.

the number of data bytes to be copied, which
is a hexadecimal value ranging from 1 to FF.

5-39

Examples:

Note that "addr#" can be specified as either an
offset address or a segment address plus an offset.
Please refer to section 5.2.1 for a complete discus-
sion.:

1. Assume that the following data exists in memory:

2%

P080:
go00
0334
0g08

You <can

11 22 33 44
55 66 77 88
99 AA CC DD

copy this entire block of data to memory 1location

0080:000C by issuing the following command:

>T 80:

g 86:8 8@:C

The result is

008@:
0e00
go04
0oe8
gaac
9010
0014

11 22 33 44
55 66 77 88
99 AA CC DD
11 22 33 44
55 66 77 88
99 AA CC DD

Taking the assumption of example 1 for instance, enter:

>T 80:

¢ 80:8 /8

The result will be:

0080
9000
0004
goa8
goac
9019

11 22 33 44
55 66 77 88
1122 33 44
55 66 77 88
00 00 00 00

Note that the original contents of the memory locations from
0080 :0008 to 0080:000B are lost after execution of this.

command.

Part E — Miscellaneous 1/0 Commands

5.3.14 Command P — Adjust the Speed of Displaying on the Screen

Name : 'PAUSE

Purpose: To adjust the speed of displaying on the
screen,

Syntax: P <n>

Comments:

You can use this command to adjust the speed
of displaying on the screen. The monitor will
pause for a specified period of time between
displaying each character. You may find this
command useful when using the M command or
other commands that function to display more
than one screenful of data.

n: represents a haxadecimal number ranging from @
to FF. The larger the number is , the slower
the speed of displaying will be. 1If you
specify the number FF, the system will pause
about 5 seconds between displaying each
character.

Example:

15

If you want the system to display the subsequent characters
from this point you are operating at lower speed than the
normal one, enter the following command:

>P 25

The number 25 is considered a reasonable speed number for you
to see the subsequent displaying characters. Based on this
speed, it will take the system about 5 seconds to respond with
a line of messages.

5.3.15 Command N — Input and Display on the Screen One Byte of Data from
a Port

Name: INPUT

Purpose: To 1input and display in hexadecimal one byte
of data from the specified port.

Syntax: N <port_ address>

Comments:
Before wusing this comwand, you should make
sure that the port address you are going to
enter 1is one which is actually assigned to a
device. Refer to the following chapter for a
description of the I/0 ports and addresses of
each deivice.

port_address: represents a hexadecimal number ranging
' from ¢ to FFFF corresponding to a
defined port.

Example:

1.

Assume that we are going to inspect what the data is at the
place that the cursor is occuping right now. Enter the
following command:

>N 1a3

Assuming that the place that the current cursor position
contains a blank, the system will respond with:

20
>

5.3.16 Command O — Send One or More Bytes of Data to an Output Port
Name: OUTPUT

Purpose: To send one or more bytes of data to a speci-
fied output port.

Syntax: O <port_address> /<data>

Comments:
This command can send one or more bytes of
data to the specified output port in the com-
mand at a time. Refer to the following chapter
for a description of the I/0 ports and their
corresponding port addresses.

port_address: represents a hexadecimal number ranging
from @ to FFFF corresponding to a
defined port.

data: represents any alphanumeric characters
or hexadecimal numbers. If you use cha-
racter data, they should be prefixed
with an apostrophe ('), such as 'ABCD.
However, 1if you use hexadecimal data,

. the apostrophe is not needed.

Example:

1. Assume that you want to output the character "A" to the
screen, Enter the following commandi

>0 1Al /'A'/
or
>0 1Al /41/

The system will display the character "A" on the screen.

5.3.17 Command E — Assign an External Terminal as the System Console

Name: EXTEND

Purpose: To allow an external terminal to be used as
the console for the MPF-I/88 :

Syntax: E<n>

Comments:

This command allows an external terminal to be
used as the console (keyboard and display
screen) of the MPF-I/88. There is also an
option to return control back to the MPF-
1/88's own built-in keyboard and screen.
because the way in which the MPF-1/88
communicates with the outside terminal is that
an Asynchronous Communications Adapter (ACA)
is wused as an interface between them, never
forget to insert the ACA card into the slot on
the 1left-upper corner of the system board of
the MPF-1/88 when using this command. Please
refer to the guide, ACA-PC, to install this
Asynchronous Communications Adapter.

Before wusing this command, vyou have to make
sure that the terminal you are going to inter-
face with the machine MPF-I/88 is set to the
following communication parameters.

Baud Rate: 9600
Parity: even
Data Bits: 7
Stop bits: 2

n: The value specified for <n> tells what device
is to become the system control.

@: represents the MPF-1/88 itself.

l: represents a CRT terminal connected to
serial port 1.

2: represents a CRT terminal connected to
serial port 2.

Example:

1. Assume that you want to interface the system with a CRT
terminal, Enter. the following command:

>El

Now, you can communicate with the system using your terminal.

5.3.18 Command W — Write Data to Tape

Name: WRITE

Purpose: To record the contents of a range of memory on
tape.

Syntax: W <addrl> <addr2> /<file_name>
Comments:

addrl: the starting address of the range of data in
memory to be recorded on tape. The address can
be specified as either an offset address or a
segment address plus an offset. Please refer
to section 5.2.1 for a complete discussion.

addr2: the ending address of the range of data in
memory to be recorded on tape. The address can
be specified as either an offset address or a
segment address plus an offset. Please refer
to section 5.2.1 for a complete discussion.

file name: The filename can be from 1 to 8 characters
long. you can type any filename in small
or capital letters. The filename must be
prefixed with the apostrophe (').

Note:
Both of the <addrl> and <addr2> must fall within the same
segment (address) range; i.e., different segment addresses
on the W command line are invalid. For example, typing the
"W 0080:0 0090:A0/'TEST' command into the system will result
in an error.

Example:
l. >W 80:0 8@:BF /'
The contents of

and ending at
filename called

TEST

these memory locations starting with 0080:0000
PP80:00BF will be recorded on tape with the
"TEST".

5.3.19 Command R — Read Data from Tape

Name: READ

Purpose:

Syntax:

Comments:

to read data from tape.

(1) R /<file name>

(2y R <addr>/<file_ name>
(3) R

(4) R <addr>

-

file_name: The filename can be from 1 to 8 characters

long. you can type any filename in small
or capital letters. The filename must be
prefixed with the apostrophe (').

addr: represents the staring address of an area

in memory from which the file you specify
or the system first encounters on tape
will be loaded into memory. The address
can be specified as either an offset
address or a segment address plus an
offset. Please refer to section 5.2.1 for
a complete discussion.

If the filename is found out by the system
during the period of reading, a message will
be shown as follows: (assume that the filename
we want is called "TEST".)

READ FILE:TEST

It could be that there are several files on
your tape, and the first file might not be the
file you want. If the system come across files
other than the one you specify, it will ignore
them and send out messages as follows:

SKIP FILE:XXXXX
NOTE:

"yxxxXx" represents whatever the filename
is of the other file it has encountered.

The system will then go on searching until it
finds the filename specified in the command.

~Syntax 1

If the system encounters the file you specify,
it will load it into memory 1locations whose
starting address is identified by the one you
used when recording that frle.

Syntax 2

This version of command is much similar to
syntax 1 in function, the only difference is
that the starting addree of the range of
memory to be loaded is specified in the
command.

Syntax 3

Based on this command, the system ignores any
filename. whatever the file it first encoun-
ters on tape will be loaded into memory. The
starting address of the range of memory loca-
tions to be loaded is specified by the one you
used when recording that file.

Syntax 4

Based on this command, what the system
performs in function is similar to syntax 3;
except that the starting address of the range
of memory locations to be loaded is specified
by you. ’

Very Important:

After you have performed any of the
above four options, remember to check
if the relative address you used in
the loaded program,such as the JMPF and
CALLF instructions, meets the offset
value within the segment address you
specify.

5-46

5.4 Control Characters

Control characters are entered by pressing a predefined key
while holding down the CTRL or ALT key. Each control character
performs a specific function.

You have already learned to use some of the control

characters such as <ALT-A> and <ALT-Z>. A summary of the control
characters and their functions are described below.

* CCTRL-S>: Suspends output to the display. Pressing any key
resumes output to the display.

* (CTRL-P>: This control character is a toggle switch. Entering
this control character once turns on the printer,
causing the screen output to be sent to the line
printer. Entering this control character a second
time turns off the printer.

* {CTRL-X>: Cancels the current input line to the command buffer.

* {ALT-Y>: Returns the system control to the monitor program.

Control Characters for Moving Cursor in the Command

Line Buffer:

* <ALT-E>: Moves the cursor up one line.

* <ALT-X>: Moves the cursor down one line.

* <ALT-S>: Moves the cursor to the left one position.

* <ALT-D>: Moves the cursor to the right one position;

* (ALT-F>: Returns the cursor to where it was located before it

was moved.

Control Characters for Scrolling the Screen:

* {ALT-A>: Scrolls down the screen.

* CALT-Z>: Scrolls up the screen.

* (ALT-Q>: Returns the cursor to where it was located before it
was moved.,

Line Assembler

6.1 The Features of the Line Assembler
The advantage of a line assembler is that when you are coding
your program in assembly language program, no memory space is
required to store your source program; that is, if your source
program is large enough, wusing the line assembler will save lots
of memory space for you.

When you are using the line assembler each time you enter
instruction, the 1line assembler will immediately translate the
source code into machine code. The assembly instructions you
enter are stored into memory at successive locations, starting
with the address specified in the A command. If no address is
specified 1in the A command, the instructions are assembled into
memory locations starting at 06086:0000.

an

The Line Assembler supports standard 8086/8088 assembly language
syntax with the following rules:

1. All numeric values entered are assumed to be hexadecimal
and can be up to 4 digits long.

2. Prefix mnemonics must be entered in front of the opcode
to which they refer. On the MPF-1/88, they should be
entered on a separate line, such as:

0080:0805 REP
J080:00866 MOVSB

3. The segment override mnemonics are CS:, DS:, ES:, and
SS:. They should be entered on the line preceding the
instruction they are to modify:

0980:16060 CS:

¢@80:1601 MOV AL, [100]
This is equivalent to the MOV AL,CS:[1608] syntax used in
a two-pass assembler.

4, String manipulation mnemonics must explicitly state the
string size. For example, MOVSW must be used to move
word strings and MOVSB must be wused to move byte
strings.

5. The mnemonic for the far return is RETF.

6. The 1line assembler will automatically assemble short,

near, or far jumps and calls, depending on the number of
displacement byte to the destination address. These can
be overridden with the NEAR or FAR prefix. For example:

6-1

19.

0980:00A8 JMP A2 A 2-BYTE SHORT JUMP
0080:060A2 JMP NEAR AS ;A 3-BYTE NEAR JUMP
¢080:00A5 JMP FAR AA ;A 5-BYTE FAR JUMP

When using the line assembler, you ‘cannot use labels to
refer to the addresses to which you intend to jump. You
must use absolute addresses. For example:

¢98¢:066109 ADD AX,CX
0984:0612 LOOP 10

Sometimes, the line assembler cannot tell whether some
operands refer to a word memory location or a byte
memory location. This will happen when none of ' the
operands in an instruction are unambiguously either word
or byte length values. 1In this case, the data type must
be explicitly stated with the prefix “WORD PTR" or "BYTE
PTR". The word "PTR" may be omitted when using the 1line
assembler. For example:

MOV BYTE PTR ([BX+DI],QA9
or MOV BYTE [BX+DI],®@A9

MOV WORD PTR [BX+DI] ,@A9
or MOV WORD [BX+DI],0A9

In each case, the CPU moves the values GA9H to the
address pointed to by the Base and Index registers. The
"BYTE" or "WORD" operator of the line assembler tells
the CPU whether the memory location is a byte or word.

The 1line assembler also cannot tell whether an operand
refers to a memory location or to an immediate operand.
The 1line assembler uses the common convention that
operands enclosed 1in square brackets refer to memory.
For example:

MOV AX,63 ;LOAD AX WITH 63H
MOV AX,[63] ;LOAD AX WITH THE CONTENTS
;OF MEMORY LOCATION 63H

Two common pseudo-codes are also included in the line
assembler. The DB opcode will assemble byte values
directly into memory in successive order. And the DW
opcode will assemble word values directly into memory in
successive order. For example:

DB 16,11,12,13,"TEST REPORT"
DB 'SELECTED ANSWERS AS FOLLOWS:'
DB "THIS IS A QUOTE:'"

DW 1388,177¢,1B58,"BATCH"

11. All forms of the register indirect addressings are
supported. For example:

ADD BX,34[BP+2][SI-1]
ADD BX,34[BP+SI+1]
ADD BX,[34+BP+2+S5I-1]
ADD BX, [BP+SI+35]

POP [BP+DI]

PUSH ([SI]

12. All opcbde synonyms are supported. For example:

LOOPZ 140
LOOPE 164
JA 200
JNBE 200

Useful
Subroutines

7.1 A List of Useful Subroutines

The following is a list of the service routines that you can use
to enhance the versatility of your programs or to communicate
with external devices. These routines are actually part of the
monitor itself, but can also be used to simplify your programs.
As you will notice, they are called by using the software inter-
rupt feature of the 8088 microprocessor. You can study the
algorithms used for each of these subroutines by looking them up
in your Monitor Source Listing Manual. Detailed descriptions of
the functions and exact details for calling each service routine
are introduced in the following pages.

Interrupt Number Subroutine Name
INT 7H END_OF _PGM
INT 8H CONSOLE_IN
INT 9H CONSOLE OUT
INT AH GET_VALUE
INT BH OUTLCD
INT CH BEEP
INT DH OUTSTRING
INT EH OUTBYTE
INT FH ATOB
INT 10H OUTWORD
INT 11H SETGETCUR
INT 12H READ LINE
INT 13H RS232DRIVER
INT 14H PRT_DRIVER
INT 15H DIAS
INT 16H . CN_IN_STATUS
INT 17H KEY_QUEUE_FLUSH
INT 18H SOUND .
INT 19H GET_MEM_SIZE
INT 1AH TV_DRIVER (Reserved)
INT 1BH THERMAL_PRT
INT 1CH ITAPE READ
INT 1DH ITAPE_WRITE
INT 1EH IENABLE _INT
INT 1FH IDISABLE INT
INT 20H Reserved
INT 21H Reserved
INT 22H AVAIL_MEM

7.2 Function Description of the Useful Subroutines

In the description below, the field labelled Input describes what
information the subroutine will expect to find in which regis-
ters. When using a subroutine while writinjy a program, be sure
that you 1load appropriate values into the correct registers
before using the INT statement to call the subroutine. The field
labelled Output tells you in which registers information returned
by the subroutine will be placed when it returns control to your
main program., You should pay careful attention especially to the
information in the field 1labelled Registers Affected. This field
tells which registers are altered by the subroutine; if your
program has important information in those registers at the point
where you call the subroutine, you should be sure to use the PUSH
instruction to save the contents of the registers onto the stack
before you call the subroutine and the POP instruction to restore
the register contents after retuzaiag from the subroutine.

7.2.1 INT 7 — END OF PGM

Name: END_OF_PGM (end of program)

Function Description:
This routine will end the execution of your program and
tranfer control of the system back to the-monitor. You
should call this routine to end each of your programs.

Input: None

Output: None

Registers Affected: None

7.2.2 INT8 — CONSOLE IN

Name: CONSOLE_IN (input a character from the current
console)

Function Description:
The function of this routine is to fetch a character
from the keyboard of the console which is currently
communicating with the system and then store it into
the AL register in the form of ASCII code.

Input: None

Output: AL

Registers Affected: None

7.2.3 INT9 — CONSOLE OUT

Name: CONSOLE_OUT (output a character to the
current console)

Function Description:
The function of this routine is to display in the ASCII
form a character stored in the AL register on the
console that 1is currently communicating with the
system.

Input: AL - contains the character to be output.

Output: None

Registers Affected: None

7.2.4

Name :

INT A — GET VALUE

GET_VALUE (get a value from the current
. console)

Function Description:

The function of this routine is to fetch a value in the
form of ASCII code passed from the keyboard of a con-
sole that is currently communicating with the systen,
and then store into the AX register in hexadecimal
form. Notice that you have to tell this routine through
the AH register what is the maximum number of -digits
that can be entered on each line of the screen.

Input: AH - holds the value that indicates the maximum

number of digits to be entered on each line of
the screen before the cursor should be moved to
the next line. Remember that the maximum number
that the AH can hold is 255.

Output:

(). AX - holds the converted character you just
entered.

(2). CL - holds the actual number of digits you Jjust
entered.

(3). ZF=0 - indicates that the characters you Jjust
entered end with the space bar.

(4). ZF=1 - indicates that the <characters you Jjust
entered end with the return key.

Registers Affected: AX, CX

7.25

Name:

INTB — OUTLCD

OUTLCD (output to LCD)

Function Description:

The function of this routine is to output a character
stored in the AL to the LCD screen of the MPF-I/88.
This routine can output any character contained in the
ASCII set supported by the MPF-I/88.

Input:

(1). AL - holds the character to be output

(2). CH=0 - indicates that you expect no cursor will
appear on the LCD screen.

7-4

(3).

Output:

Registers

CH<>@ - means the reverse of CH=0; 1i.e., you
expect that the cursor will display on the
screen.

CL=0 - indicates that you expect the system not

to scroll up the screen.

CL<>@# - means you expect the system to scroll up
the screen.

None

Affected: None

7.2.6 INTC — BEEP

Name: BEEP

Function Description:

The

function of this routine is to cause the MPF-1/88

to make a short beep sound from its speaker.

Input: None

Output:

Registers

7.27 INTD

None

Affected: None

— OUTSTRING

Name: OUTSTRING (output a string to the current

console)

Function Description:

The
data
code

function of this routine is to output a string of
which 1is stored in memory in the form of ASCII
to the screen of the console that 1is currently

communicating with the system. This routine doesn't
display characters with ASCII codes greater that 80H.

Input:

(1).

(2).

(3).

DS - contains the segment address value of the
start of the string of data to be output.

SI - contains the offset value of the start of
the string of data to be output.

The last byte of the string of data to be output
should have the sign bit set to 1, representing
the end of the string of data to be output.

Output:

None

Registers Affected: None

7.2.8 INTE — OUTBYTE
Name: OUTBYTE (output a byte to the current
console)

Function Description:
The function of this routine is to display in hexadeci-
mal form the contents of the AL register on the screen
of the console which is currently communicating with
the system.

Input: AL

Output: None

Registers Affected: None -~

7.29 INTF

— ATOB

Name: ATOB (convert ASCII numeric string to

binary)

Function Description:

The

function of this routine is to convert a string of

numerical data stored in memory in the form of ASCII

code

into binary numbers. Note that you have to tell

the system through the CX register what is the maximum
number of characters you are going to convert.

Input:

(l) .

(2).

(3).

Note

CX - holds the maximum number of characters to be
converted. Remember that the maximum number
that the CX can hold is 65535,

DS - stores the segment address value of the start
: of the string of characters to be converted.

SI - stores the offset address value of the start
of the string of characters to be converted.

No ending address or any mark tc indicate the
ending address is required for this routine. This
routine will automatically convert the string of
data you require until it finds a character that
is unconvertible into binary or encounters the

7-6

length limit in the CX register.
Output: DX

Registers Affected: AX, DX, CX, SI

7.2.10 INT 10 — OUTWORD

Name: OUTWORD (output a word to the current
console)

Function Description:
The function of this routine is to display in hexadeci-
mal form a character or number stored in the AX
register on the screen of the console that is currently
communicating with the system.

Input: AX - contains the data to be output.

Output: None

Registers Affected: AX, CX, DX

7.2.11 INT 11 — SETGETCUR

Name: SETGETCUR (set or get current cursor
position)

Function Description:

The function of this routine is. to set or inquire about
the current cursor position on the LCD screen of the

MPF-1/88.

Input:
(1). AH=0# - indicates to set the cursor position.
(2) . AH=1 - indicates to obtain the current cursor

position,
In the case of setting the cursor position:

(3). CH - contains the row number on the LCD screen.
The number ranges from @ to 1.

(4) . CL - contains the column number on the LCD screen.
The number ranges from @ to 19.

7-7

Output:
In the case of obtaining the current cursor position:

(). CH - contains the row number on the LCD screen.
The number ranges from @ to 1.

(2). CL - contains the column number on the LCD screen.
The number ranges from ¢ to 19.

Registers Affected: BX, CX, SI

7.2.12 INT 12 — READ LINE

Name: READ_LINE (read a line from the current
console)

Function Description:

The function of this routine is to get a line of data

from the keyboard of the console which is currently

communicating with the system and also display'the line
of data on the screen of that console.:
Input:

(). AH - holds the value that indicates the maximum
number of characters to be entered on each
line of the screen. Remember that the maximum
number that the AH register can hold is 255.

(2). DS - holds the segment address of memory in which
the data to be entered will be stored.

(3). SI - holds the offset address at which the data to
be entered will be stored.

Output: None

Registers Affected: None

7.2.13 INT 13 — RS232 DRIVER
Name: RS232DRIVER (start up the RS232 driver)
Function Description:

The function of this routine is to interface with
external devices using an asynchronous (serial) commu-
nications interface. There are several different speci-
fic functions provided by this routine, such as sending
out and fetching data to and from the external devices,
examining the status of 8250 serial controller, or

7-8

initializing the communication port itself.

Input:

(l). DX - contains the port address of the port RS232

A.

(2)

to which the external device is connected. On
the MPF-I/88, two port addresses are pro-
vided. They are 2F8 and 3F8.

Note that the DX should always be stored with
the port address whenever this routine is
used no matter which function 1is to Dbe
performed.

FUNCTION 1:

Initializes the serial communications port.

AH=@ - indicates that serial port should be

initialized.

AL - Contains the initialization parameters.

Initialization Parameters:

5 4 3 2 1 "]
""""""" RATE PARITY STOPBIT WORD LENGTH
005 - 116 10 - Neme 8 -1 18 - 7 BITS
@1 - ODD 1 -2 11 - 8 BITS

11 - EVEN

g11
109
101
119

111

1209

2400

4800

9600

B. FUNCTION 2:

aAH=1 -

Transmits a character which is stored in AL and
return status in AH.

ind
thr

icates that a character should be output
ough the port.

AL - holds the character to be output.

C. FUNCTION 3: To receive a character.

AH=2 - indicates to receive a character from an exter-
nal device over the communication port.

D. FUNCTION 4:

To examine the status of the RS232 port.

AH=3 - indicates to examine the status of an external

Output:

A.

B.

C.

D.

device over the communication port.

FUNCTION 1:

This function returns serial port statuses in AX.
FUNCTION 2:

If a character is transmitted successfully, this
function returns status in AH. Otherwise, bit 7 of
AH is set.

FUNCTION 3:

If a character 1is received, AL will hold that
character. This function returns status in AH.

FUNCTION 4:

This function returns serial port statuses in AX. AH
will contain the line status and AL will contain the
modem status.

The meaning of each bit in the AH register holding
the status:

BIT 7 = Time out

BIT 6 = Trans shift register empty
BIT 5 = Trans holding register empty
BIT 4 = Break detect

BIT 3 = Framing error

BIT 2 = Parity error

BIT 1 = Overrun error

BIT @ = Data ready

The meaning of each bit in the AL register holding
the status:

BIT 7 = Receive line signal detect

BIT 6 = Ring indicator

BIT 5 = Data set ready

BIT 4 = Clear to send

BIT 3 = Delta receive line signal detect

7-19

BIT 2
BIT 1
BIT @

Trailing edge ring detector
Delta data set ready
Delta clear to send

Registers Affected: None except for AX

7.2.14 INT 14 — PRT DRIVER

Name: PRT_pRiVER (printer driver)

Function Description:

The function of this routine is to output data to the
Centronics parallel port which is built in the system.

Input: AL - contains the data to be printed.
Output:

AH=0 - indicates that the data you required was
successfully printed out.

AH=1 - indicates that the data you required was not
successfully printed out.

Registers Affected: None

7.2.15 INT 15 — DISA

Name: DISA (disassemble)

Function Description:
The function of this routine is to convert a machine
%gga?age instruction into assembly source mnemonic

Input:

(l). ES - contains the segment address of the instruc-
tion to be disassembled.

(2). DI - contains the offset addrescs of the instruc-
tion to be disassembled.

Output: None

Registers Affected: None

7.2.16 INT 16 — CN IN STATUS

Name: CN_IN_STATUS (check the input status of the
current console)

Function Description:

The function of this routine is to check the input
status of the console which is currently communicating
with the system. Through the result of status sent from
the console you can see if the console is busy perfor-

ming some operation, if any data is ready to be
ceived from the console, and so on..

Input: None

Output:

(l). AL=0 - indicates that there is no data ready

be received from the console.

re-

to

(2). AL<>@ - indicates that there is some data ready to

be received from the console.

Note:
If the console currently communicating with

the

system is an external terminal, then a non-zero
status byte in the AL register can be interpreted

as follows:

The respective meaning of each bit in the

register holding the status:

BIT 7 = Time out

BIT 6 = Trans shift register empty
BIT 5 = Trans holding register empty
BIT 4 = Break detect

BIT 3 = Framing error

BIT 2 = Parity error

BIT 1 = Overrun error

BIT @ = Data ready

The respective meaning of each bit in the
register holding the status:

BIT 7 = Receive line signal detect

BIT 6 = Ring indicator

BIT 5 = Data set ready

BIT 4 = Clear to send

BIT 3 = Delta receive line signal detect
BIT 2.= Trailing edge ring detector

BIT 1 = Delta data set ready

BIT @ = Delta clear to send

Registers Affected: None

AH

AL

7.2.17 INT 17 — KEY QUEUE FLUSH

Name: KEY_QUEUE_FLUSH (flush the keyboard input
: queue)

Function Description:
On the MPF-I/88, each time you enter a character at the
keyboard, the system stores it in a working area,
called the key queue. Whenever you want to clear or
ignore the contents of the key queue in the system,
just call this routine.

Input: None

Output: None

Registers Affected: None

7.2.18 INT 18 — SOUND

Name: SOUND

Function Description:
The function of this routine is to have the MPF-1/88
make a sound from its speaker based on the contents of
the registers BX and CX.

Input:
(1) . BX - holds the duration of the sound.
(2). CX - holds the frequency of the sound.

Output: None

Registers Affected: None

7.2.19 INT 19 — GET MEM SIZE
Name: GET_MEM_SIZE (get memory size)
Function'Description:

The function of this routine is to ascertain the size of
the RAM.

Input: None

Output:

AX - contains the result of the memory size. The
of the number is in kilobytes.

Registers Affected: None

7.2.20 INT 1B — THERMAL PRT

Name: THERMAL PRT (thermal printer driver)

Function Description:

The function of this routine is to output data to
thermal printer attached to the system.

Input: AL - contains the data to be printed.
Output: None

Registers Affected: None

unit

the

7.2.21 INT 1CH —— READ DATA TAPE

Name :
Function:
Input:

Output:

ITAPE_READ

Read data from tape.

CX 1is used to store the number of bytes to be
read. %

The ES and DI registers are used as pointers
to point to the memory block (buffer area) to
be read.

If CL is cleared to 6, then there is no error
during tape read operation.

If CL is not cleared to @, then error occurs
during tape read operation.

Register Affected: All
7.2.22 INT 1DH —— WRITE DATA TO TAPE
Name: ITAPE WRITE
Function: Write data to tape (in IBM PC format).
Input: CX contains the number of bytes to be written.
The DS and SI registers are used as pointers
to point to the memory buffer whose contents
are to be written.
Output: None
Register Affected: All

7.2.23 INT 1EH — IENABLE INT

Name :

Function:

Input:

Output:

Register Affected:

(Please refer to

[ENABLE_INT

Enable keyboard interrupt.
None

None

None

Chapter Five I/0 Device Drivers of MPF-I/88

Reference Manual for more details of the keyboard interrupt.)

7.2.24 INT 1FH —— IDISABLE-INT

Name:

Function:

Input:

Output:

Register Affected:

7.2.25 INT 20H and 21H

IDISABLE_INT

Disable keyboard interrupt.
None

None

None

INT 20H and 21H are reserved.

7-15

7.2.26 INT 22H —— AVAIL-MEM

Name: AVAIL MEM
Function: Set or display the starting address of free
memory space in the user's RAM.

(A) Display (Get) the Starting Address

Input: AH = 0
Output: The starting address is returned in the ES
(for segment address) and DI (for offset
address) registers.

(B) Set Starting Address

Input: AH = 1.
The starting address is stored in the ES (for
segment address) and DI (for offset address)
registers.

INT @FFH

Since some integrated circuits can only generate the interrupt
vector "FF", four bytes are reserved for the instruction INT FF
as interrupt vector. The default value of the interrupt vector
causes INT @FFH to jump back to command interpreter.

ALT Y

When entering the ALT-Y control character, the monitor program
will execute the instruction INT 6. The default vector of INT 6
causes the monitor program to Jjumpt back to the command
interpreter. The INT 6 was intended as a feature which enables
the user to transfer the control of a program to a desired
location during program execution.

You can change the value of the interrupt vector so that any time
ALT Y 1is entered, program control will be transferred to the
desired location.

Appendix A CPU Pin Function
Description

The 8088 CPU contains the following pins:

1) The 8-bit system data bus,

2) The 20-pin address bus,

3) Power and ground for interface boards,

4) Clock and timing signals,

5) The control lines for memory or I/O read or write,
6) Maskable and non-maskable interrupt request lines,
7) Status line for Interrupt Enable Flag, '

8) Bus cycle status lines.

The signal 1lines provided by the 8088 CPU are described as
follows:

Note: In the following description of the CPU pin functions,
"I" is used to represent that the signal line is an input
signal from system bus; "O" represents an output to system
bus; while "I/0" indicates a signal which can either be an
input or an output line.

MN/MX (I)

This pin is used to control whether the 8688 is configured to
operate in minimum mode or maximum mode. If the 8088 is
configured to operate in maximum mode, it can operate in close
interaction with other coprocessors such as the 8¢87. If this pin
is pulled high, then the 8088 operates in minimum mode. If it is
strapped low, the CPU operates in maximum mode. Since the MPF-
1/88 is configured to operate in minimum mode, this pin is pulled
high.

DG - D7 (I/0)

These lines are connected to the system data bus. These pins are
tri-state signal lines. They are used to carry data to and from
the CPU.

AQG - Al9 (O)

These 1lines are connected to the system address bus, which can

address up to one megabytes of memory. These lines are tri-state
signal lines and are generated by the processor.

READY (I)

The READY line is used by slow memory oOr 1/0 devices to signal a
"not ready" state so that the CPU can insert additional wait
states in a bus cycle.

TEST (I)

This pin is sampled when the CPU executes the WAIT instruction.
If it is low when tested, the instruction following the WAIT
instruction is executed. If it is high, the CPU will pause.

RD (0)

This pin is active low. It is pulsed low to indicate that the CPU
is reading data from a memory or I/O device. .

WR (0)

This pin is active low. It is pulsed low to indicate that the CPU
is writing data to a memory or I/0 device.

TI0/M (0)

This 1is pulled high for a memory access, and low for an 1I/0
access.

HOLD (I)

This pin is used by an external device, usually a bus master, to
request for the service of the system bus. If an external device
needs the system bus for data transfer, it will pulse this pin
high. Upon detecting a high on this pin, the CPU will complete
the current bus cycle and issue a hold acknowledge through the
HLDA pin. A HOLD signal from an external device requests the CPU
to release the system bus temporarily for servicing the need of
the external device.

HLDA (O)

This signal is high active. This signal is raised high when the
CPU acknowledges a HOLD request from an external device. Once
the HOLD request is acknowledged, the CPU releases bus control to
the requesting external device by floating the system bus between
itself and the memory and I/0 devices in order to let the exter-
nal device to take over the control of the system bus.

ALE (O)

This pin, Address Latch Enable, is active high, and is generated
by the 8088 for latching valid address.

DEN (O)

This signal, data enable, is active low. This signal determines
whether the data buffer output is enabled or disabled. Data can
be output only when this pin is active.

SS

=

(0)

This tri-state output is used with other two signal 1lines to
provide bus cycle status to the peripheral devices. The other
two signals which determine bus cycle status are I0/M and DT/R.

DT/R (O)

In addition to providing bus cycle status, the 3-state output
line determines the direction of data transfer between the CPU
and data buffer. If this pin is raised high, data is transferred
from the CPU to the data buffer. If this pin is strapped low,
data is transferred from the data buffer to the CPU.

S3, sS4 (0)

These two signal lines are multiplexed with address lines Al6 and
Al7. These two pins determine which segment register provides
the segment portion of an actual address. During all T (clock
period) states except for the first T state, information on the
segment portion of the actual physical address is present on the
output of these two pins. In the first T state, these two pins
are used as ordinary address lines - Al6 and Al7. In an I/O bus
cycle, these pins are always low in the first clock period.

S5 (0)

This line is multiplexed with the address line Al8, During the
first clock period, this pin serves as AlS8. During all other
clock periods, this pin is used to reflect the state of the CPU's
Interrupt Enable flag. In an I/O bus cycle, this pin is always
low in the first clock period.

S6 (0)

This line is multiplexed with the address line Al9, During the
first clock period, this pin serves as Al9. In an I/O bus cycle,
this pin is always low in the first clock period. During all
other clock periods, this pin is strapped low if the system bus
is under the control of the CPU. However, .f the system bus is
under the control of other bus masters such as a DMA controller,
this pin is floated by the CPU to allow the other bus master" to
gain control of the system bus.

INTR (1)

This 1line 1is used by the I/0 devices to generate interrupt re-
quests to the CPU. When an interrupt request is generated, this
pin is held high until the processor acknowledges.

NMI (I)

This 1line 1is used by the I/O devices to generate interrupt re-
quests to the CPU. When an interrupt request is generated, this
pin goes from low to high (edge-triggered).

TOR (O)

This control signal, active low, causes the an addressed 1I/0
device to present data onto the data bus.,. It is driven by the
processor.

IOwWw (O)

This control signal, active low, causes the addressed I/0 device
to read the data present on the data bus. It is driven by the
processor.

MEMR (O)

This control signal, active low, causes the addressed memory
device to present data onto the data bus. It is driven by the
processor. ’

MEMW (O)

This control signal, active low, causes the addressed memory
device to fetch the data present on the data bus. It is driven
by the processor.

CLK (0)

System clock. It is derived by dividing the oscillator by three.
It has a clock period of 218 ns and 33% duty cycle.

Appendicx B 1/0 Expansion
Bus Pin Function
Description

The 1I/0 expansion bus extends the functions of the 8088 system
bus with the addition of sigrnal pins for handling interrupt
processing.

The I/0 expansion bus contains the followings:

1) The 8-bit system data bus,

2) The 20-pin address bus,

3) Power and ground for interface boards,

4) Clock and timing signals,

5) The control lines for memory or I/0 read or write,
6) Maskable and non-maskable interrupt request lines,
7) Status line for Interrupt Enable Flag,

8) Bus cycle status lines,

These signal lines are provided in a 62-pin connector.

An I1/0 ready line =-- I/O CH RDY -- is provided on the 1I/0
channel, enabling the processor to perform data transfer with
slow memory or I/O devices. If the I/0 ready line is not acti-

vated by an selected I/0 device, all processor read or write
cycle takes four clock periods with each clock period being 210

ns. All processor I/0 read or write cycle takes five clock
periods. Each DMA data transfer takes five clock periods per
byte.

If you want to attach external devices to the MPF-I/88, you have
to ensure that the system board has sufficient power to drive the
external card connected to the system board. The power adapter
which is shipped to you together with the MPF-I/88 supplies 1lA. A
switching power supply that supplies 3A can be used if you intend
to insert more than one external devices (peripheral cards) to
the system. In case you want to install more than one peripheral
cards to the system, you have to calculate the total amount of
electric current that the peripheral cards may consume. If the
tétal amount of electric current that may be consumed by the
peripheral cards 1is larger than that is supplied by the power
supply, the system will not be able to drive the peripheral
cards, and will stop after power-on.

The 1/0 expansion bus signal lines are listed as follows:

Bl GND Al * (-HOLD)
B2 +RESET DRV . A2 +D7 -
B3 +5V A3 +D6
B4 +IRQ2 A4 #DS5
B5 * (-INTA) A5 +D4
B6 +DRQ2 A6 +D3
B7 =5V A7 +D2
B8 * (+INTR) A8 +D1
B9 12v A9 +D@
B1@® GND Al@ +I/0 CH RDY
B1ll -MEMW All +AEN
Bl2 -~-MEMR Al2 +A19
Bl13 -IOW Al3 +Al8
B1l4 -=IOR Al4 +Al7
B15 -DACK3 AlS5 +Alé6
B16 +DRQ3 Ale +A1l5
B17 -DACK1l Al7 +Al4
B18 +DRQ1 Al8 +A1l3
B19 -DACK®@ Al9 +Al2
B2@ CLOCK A20 +All
B21 +IRQ7 A21 +Al0
B22 +IRQ6 A22 +A9
B23 +IRQS A23 +A8
B24 +IRQ4 A24 +A7
B25 +IRQ3 A25 +A6
B26 -~DACK2 A26 +A5
B27 +T/C A27 +A4
B28 +ALE A28 +A3
B29 +5V A29 +A2
B3@ +0SC A3 +al
B31 +GND A3l +A0Q
B32 ** (+GND) A32 ** (+5V)

NOTE: The asterisk (*) is marked for the signal lines which are
assigned different functions as compared with the pin
assignment for IBM PC I/O channel. For example, pin B5 is
assigned for -INTA for the MPF-I/88 expansion bus rather
than -5VDC as defined in the IBM PC expansion slot:

PIN MPF-I/88 IBM PC

B5 -INTA -5VDC

B3 +INTR Reserved
Al -HOLD -I/0 CH CK

The signal ‘lines provided by the I/O channel are described as
follows:

Note: In the following description of the CPU pin
functions, "I" 1is used to represent that . the signal
line is an input signal from system bus; "O0", an output
to system bus; while "I/O", a signal which can either be
an input or an output line.

D@ - D7 (1/0)
These lines are connected to the system data bus. These pins are
tri-state.

A¢ - Al19 (0)

These lines are connected to the system address bus, which can
address up to one megabytes of memory. These lines are tri-state
signal lines and are generated by the processor.

ALE (O)

This pin, Address Latch Enable, is generated by the processor for
latching valid address. This line is active high. Note that this
pin is an input on the I/0 channel. It is, however, an output
pin on the CPU.

HOLD (I)

This pin is used by the external devices, usually bus masters, to
request control of the system bus. If an external device needs
the system bus for data transfer, it will pulse this pin high.
Upon detecting a high on this pin, the CPU will complete the
current bus cycle and issue a hold acknowledge through the HLDA
pin. A HOLD signal from an external device requests the CPU to
release the system bus temporarily for servicing the need of the
external device. Since HOLD request is sent from an external
device through ‘the I/0 channel to the CPU, therefore, this pin is
an output from the I/0O channel, and an input pin on the CPU.

INTR (I)

This 1line is used by the I/0 devices to generate interrupt re-
quests to the CPU. When an interrupt request is generated, this
pin is held high until the- processor acknowledges. Since
interrupt request is sent from external devices via the 1I/0
channel to the CPU, hence this pin is an output from the 1I/0
channel and an input on the CPU.

IOR (O)

This control signal, active low, causes the addressed 1/0 device
to present data.onto the data bus. It is driven by the pro-
cessor. This state of this input is determined by the states of

the 10/M and the RD pins of the CPU.
tow (0)

This control signal, active low, causes the addressed 1/0 device
to read the data present on the data bus. It is driven by the
processor. The state of this input is determined by the states of
the 10/M and the WR pins of the CPU.

MEMR (O)

This control signal, active low, causes the addressed memory
device to present data onto the data bus. It is driven by the
processor. This pin becomes active when a low is present on both
the T0/M and the RD pins of the CPU.

MEMW (O)

This control signal, active low, causes the addressed memory
device to fetch the data present on the data bus. It is driven
by the processor. This pin becomes active when a low is present
on both the TO/M and the WR pins of the CPU.

cLK (0)

System clock. It is derived by dividing the oscillator output by
three. It has a clock period of 210 ns and 33% duty cycle. This
signal is sent by the CPU to the I1/0 channel.

1/0 CH RDY (I)

The signal (usually high or "ready") is pulled low by a slow

memory or I/0 device to extend memory or I/0 bus cycles. 8y =
enables a user to attach slower memory Or 1/0 devices to the 1/0
channel. This line is driven low by a slow device immediately

after it detects a valid address and a read or write command.
This line should never be driven low for more than 10 clock
periods. This signal is sent from an external device via the 1/0
channel to the CPU. Therefore, this pin is an output pin from
the I/0 channel and an input on the CPU.

AEN (0)

This line, active high, enables an external bus master such as a
DMA Controller to gain control of the system address bus, data
bus, read command lines for a memory or I/0 device, oOr write
command lines for a memory or I1/0 device. Output from the HLDA
pin from the CPU is sent to the external bus master via the 1/0
channel. Therefore, this pin is an input.

osc (0)

This signal is provided by a oscillator operating at 14.31818
MHz. It has a 50% duty cycle.

RESET DRV (0)

This signal, Reset Driver, is active high. It is used toinitia-
lize or reset system logic upon power-up. It is synchronized to
the falling edge of clock.

~INTA

This line is used by the CPU to generate an interrupt acknowledge
signal to the interrupting device.

The following signal lines are valid only when external
expansion cards built with these signal 1lines are
plugged to the main system board.

IRQ2 - IRQ7 (I)

These lines are used by the 1/0 devices to generate interrupt
requests 2 to 7 to the CPU. They are prioritized with IRQ2
having the highest priority and IRQ7 the lowest priority. When
an interrupt request is generated, this pin is held high until
the processor acknowledges.

DRQ1 - DRQ3 (I)

This lines, active high, are used by peripheral devices to gain
DMA service. These signals are prioritized with DRQ1l having the
highest priority and DRQ3 the lowest priority. A DMA request is
issued by raising the DRQ line high until the corresponding DACK
line becomes active.

DACK@ - DACK3 (0)

These lines, active low, are used to acknowledge DMA requests
and to refresh system dynamic RAM.

T/C (0O)

Terminal Count. This line, active high, sends a pulse when
the terminal count for a DMA transfer is reached.

The rest of the I/0 channel connector pins are used to provide
power and ground to the channel.

Appendix C AUTO ROM and
EXTERNAL COMMANDS

AUTO ROM

The monitor program (version 1.1) of MPF-I/88 allows you design
your own auto ROMs for the applications you desire. Program
stored in the auto ROM gets executed as soon as you power up the
machine. The auto ROM can be inserted in any of the ROM sockets
(or the ROM socket on a system expansion card).

Under monitor program version 1.1, an auto ROM can be installed
on any of the two built-in ROM sockets on the MPF~I/88 mother
board. Board locations Ul9 and U20 are reserved for system ROM
expansion.

Take note that you can not install the auto ROM this way under
monitor program 1.0.

The monitor program views the two ROMs installed on board
locations Ul9 and U20 as ROMLl and ROM2, respectively. In other
words, Ul9 and U20 are referenced as ROML and ROM2 by the monitor
program. The relationships among the expansion ROMs, wmonitor
program, and board locations are illustrated as follows:

f ROM RAM2
c21 %ﬁ
"5 -momi . 1™ RAM1
fé? .cpE]o]Ri?
u20 U2
ROM2 RAMO
‘0 c31

Upon power-up, the monitor program will check if any system
expansion ROM is installed during system reset. If the monitor
program detects the presence of an auto ROM, then it will excute
the program stored in the auto ROM.

In order to make it convenient for you to expand the system under
monitor program version 1.1, you can place the ORG # assembler
directive in front of the program to be stored in the auto ROM.
However, under monitor program version 1.0, the auto ROM should
be so designed that the starting address of ROM1 should be
FOQY0:8000 and that for ROM2 should be FO00:4000.

EXTERNAL COMMANDS

The monitor program version 1.1 allows user-designed monitor
commands (or programs) to be executed in an ease way. The user-
designed monitor commands can be (and are frequently) stored in a
user-supplied EPROM. These user-desiygned monitor commands are
referred to as external commands.

If an EPROM which contains user-defined monitor commands is
installed in the system expansion ROM socket or an expansion
card, and if the ROM identifier and the user-defined monitor
commands are stored in the EPROM in compliance with the code
arrangement rules as set forth in the chapter on MPF-1/88 system
reset, the monitor program version 1.1 allows the user-defined
EPROM a chance to perform an initialization operation when the
existence of such an EPROM is assured (during system reset). If
no chip initialization is required, the instruction RET FAR must
be stored immediately after the ROM 1identifier. 1In case you
desire to perform an initialization, then you should use RET FAR
as the last instruction of the initialization routine. After a
system reset has been performed on a system installed with user-
dedfined EPROM, the monitor program "knows" that external com-
mands in the user—-defined EPROM are accessible.

The command interpreter not only processes internal (or built-in)
monitor commands, 1t can also process external commands. Each
time a command is entered, the command interpreter will check if
the command 1is an internal command by checking a look-up table
for the internal command characters. If the entered command
character is not found in the internal command look-up table, the
command interpreter will search the external command buffer
(another area in the system RAM) in order to find out if the
command entered is an external command.

The external command buffer is a memory block which is set aside
by the monitor program for storing up to five external commands
designed by users. The external commands are stored in the RAM as
follows:

ES:DI points

to the start

of the external
command buffer

COMMAND ADDRESS 1

COMMAND ADDRESS2

SYSTEM RAM

COMMAND1

- ASCII code of

COMMAND2

an external command

COMMAND3

COMMAND4

COMMANDS

b o o o e h —— —— ——— —

& OFFSET ADDRESS

—} SEGMENT ADDRESS

- e - - — - —]

e et — e o = - —

The first five bytes of the external command buffer can be used
to store the ASCII codes of the command characters. Each byte can
be stored with the ASCII code of an external command character.

The succeeding 20 bytes of the external command buffer are stored
with the starting addresses of external commands. The starting
address of a command takes four bytes to store with the offset
address stored in the first two bytes and the segment address
stored in the succeeding two bytes. The starting address of the
command buffer is pointed by the ES and DI registers while the
monitor program jump to your initialization routine.

If the command entered is an external command, then the monitor
will access the external command buffer in order to find out
which command is entered. If the monitor command character
entered 1is found to be identical with any one of the ASCII codes
already stored in the external command buffer, the monitor will
fetch the starting address of the command and then execute the
user—~defined external command.

Appendix D Memory Map

Qo330 H PO80GH

31000H

2K RAM

@37FFH @OFFFH @17FFH

RAM@ RAM1 RAM2
P0000H @2000H

@4000H

8K RAM

J1FFFH @3FFFH @SFFFH

ROM P
FFFF)

> 8K

EQGQ
DFFF

8K

(o4 11%) .

Appendix E
I/0 Port Addresses

I/0 Port Addresses

The 1I/0 port addresses assigned to I/0 devices attached tol the
MPF-1/88 are listed as follows:

LCD:
Read Write
Command 1A2H 1A@H
Data 1A3H 1lalH
Printer:

Printer output data port: Port 1E@H
Printer strobe (STB): Bit 7 of port 180H
BUSY (printer): Bit 6 of port 1C@H.

Keyboard:

Keyboard array output: Bit 3 through Bit @ of port 180H and bit 0
through bit 7 of port 160¢H.

Keyboard array intput: Bit @ through 4 of port 1C@#H.

Control key: Bit 5 of port 1C@H.

TAPE-OUT (beep): Bit 6 of port 180H.

TAPE-IN: Bit 7 port 1C@H.

E-1

Port 160H:
BITS

KEYBOARD ARRAY OUTPUT
Port 180H:

BITS

b KEYBOARD ARRAY OUTPUT
—————————————————— NMI (Enabled=1)

| e e NC (No connection)

—————————————————————————— TAPE-OUT (BEEP) (Enabled=1)

SRN———
o
W
=9
w
)
~
)

------------------------------ PRINTER STROBE (Enabled=0)

Port 1C@H:

~
o
u
a
w
N
-
S

I
!
: e ——— KEYBOARD ARRAY INPUT
'
!

----------------------- CONTROL KEY

Appendix F

Printer Connector
Pin Assignment

MPF-I1/88 Printer Connector Pin Assignment

Pin{ 1 3 5 7 9 11] 13| 15
+D@| +D1]| +D2|+D3 [+D4|+D5|+D6|+D7

Pin 2 4 6 8 19 12| 14 16
—STB| GND [GND | GND [GND | GND |+BUSY| N.C.

Appendix G Error Messages

10

Exror @1
Description: Error type 1 -~ SYNTAX ERROR

This means that either your command syntax is invalid or you
have a typing mistake. Make the necessary corrections.

Error @2
Description: Error type 2 - RANGE ERROR

This means that either the upper or lower range limits you set
are incorrect or unallowable. Here are some conditions that
may bring about this kind of error:

A. Error occurs when range limits are not in the same segment.
Refer to Example 1, we set the lower limit at memory loca-
tion 1¢ in segment 90 and the upper limit at location 28 in
segment 16@. This 1is not allowable. The memory ranges
should both be in segment 90 or segment 100.

Example 1:

>90:10 100:20

B. The range limits are in the same segment, however, the
lower range limit is greater than the upper range limit and
it is not allowable, so error occurs. Remember, the lower
range limit can only be equal or smaller than the upper
range limit , but never greater.

Example 2:

>2000,1000

C. The address variable exceeded the maximum allowable range
limits. For example, you set a segment range from 38 to 60
but you are addressing memory location 76 in that segment,
therefore range error occurs because memory location 70 is
not within the range of that segment.

Error @4
Description: Error type 4 - ROM-CHECK-ERR

Upon encountering this error, consult your local Multitech
dealer.

Exror @5
Description: Error type 5 - RAM-CHECK-ERR

Consult your local Multitech dealer when this error occurs.

Error @8
Description: Error type 8 - TAPE-READ-ERR

This means that the tape is defective. Try rewinding the tape
and reading it again, and if still nothing happens, then
something is definitely wrong with the tape.

Error @E
Description: Error type 14 - NONEXIST DEVICE

When you get this kind of error, it may mean either one of two
things. One, there is no RS232 card or two, the RS232 card is
defective.

So, whenever you see Error @GE, check if the RS232 card is
installed and if the power is on. And if you still get Error
0E, then that means the RS232 card is defective, please con-
sult your local Multitech dealer.

Appendix H
Table of ASCII Codes

The following is the table of ASCII codes supported by MPF-I/88.

*** Table of ASCII Codes **x*

mMsp| O |11 2| 3|4 |5 |67
LSD 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111
0 | 0000 kpacel O | @ [P | " | p
1 | oo01 1'11T[(A|Q|a|d
2 | o010 “|2|B|R|b|r
3 |oom #13|C|S|c|s
4 |0100 $(4|D|T|d|t
5 |o101 %|5|E|U|e|u
6 |o0110 &1 6| F|V|f|v
7 | o111 | Ben /171 G|W| 9 |w
8 |1000 (E;_S) (| 8|H|X]|h| x
9 |1001 | TAB Ylolr|yl|lily
A |1010] LF | | J|lZ2]|) |2z
B |1011 esc|+| 5 | K| (| k|
C |1100]| FF s (<L]/
D |1101] CR —|=|{M|[] | m]|}
E [110] * [>|N n |~
F [un /12|10 o

Note 1:

The ASCII codes for some special function keys such as Fl, F2,
SHIFT-Fl, and SHIFT-F2 are not listed in the table. Their ASCII
codes are: :

Fl: 81H F2: 82H SHIFT-F1l: 83H SHIFT-F2: B84H

Note also that the ASCII codes for these special function keys
are never displayed.

Note 2:

The CAPLOCK key does not have an ASCII code. ‘A position code is
used to detect whether this key is pressed.

Note 3:
If a key, say S, is pressed while holding down the ALT key, then

the key code so generated is the sum of the ASCII code of that
key (S) and 80H (hexadecimal).

H=-2

Appendix 1
CPU Pin Assignment

GND ——

1 40

Al4 —-_—r 2 39
A13 —-a—— 3 38
A12 —-—o 4 37
All --—— 5 36
A1) -4—— 6 35
A9 a4——r 7 34
A8 -4—»| 8 33
AD7 -a—{ 9 32

= Vee
—a A15
— A16/S3
———a A17/S4
———= A18/S5
——= A19/S6
———= SSO
——— MN/MX
| RD

AD6 -a—»~ 10 8088 31 j-a— RQ/GTO, HOLD

ADS =-t—= 11 CPU 30 j=——=— RQ/GT1, HLDA
AD4 -—p] 12 29 ——» LOCK, WR
AD3 -—#1 13 28 —= 352, |IO/M
AD2 ~a— 14 27 — S1,DT/R
AD1 -—» 15 26 — S0, DEN
ADO ==—=1 16 25 = QS0, ALE
NM| —ai 17 24 = QS1, INTA
INTR ——={ 18 23 f=a—— TEST
CLK —#= 19 22 p—— READY
GND ——— 20 21 RESET
Pin Name Description , Type
ADO-AD?7 Address/Data Bus Bidirectional , tristate
AB-A15 Address Bus Output, tristate
A16/S3, A17/54 Address/Segment identifier OQutput, trisate
A18/S5 Address/Interrupt enable status Qutput, tristate
A19/S6 Address/status Output, tristate
SSO Status output Output, tristate
RD Read control Output, tristate
READY Wait state request {nput
TEST Wait for test control Input
INTR Interrupt request Input
NIMI Non-maskable interrupt request Input
RESET System Reset Input
CLK System Clock Input
MN/MX = GND for a maximum system
S0, S1, S2 Machine cycle status Output, tristate
RQ/GTO, RQ/GT1 Local bus priority control Bidirectional
Qso, as1 Instruction queue status Qutput
LOCK Bus hold control Qutput, tristate
MN/MX =V for a minimum systern
10/M Memory or }/O access Output, tristate
WR Write control Output, tristate
ALE Address Latch enable Qutput
DT/R Data transmit/receive QOutput, tristate
DEN Data enable OQutput, tristate
INTA Interrupt acknowledge Qutput, tristate
HOLD Hold request Input
HLDA Hold acknowledge Output
Vce. GND Power, ground

Maximum System Signals Minimum System Signals

8088 Pins and Signal Assignments

I-1

Appendix] 8088 Registers

ax

BX

CX

DX

AH AL
BH BL
CH CL
DH DL
SP

BP

SI

DI

Accumulator
Base Reg.
Counter

Data

Stack Pointer
Base Pointer
Source Index

Destination Index

Ip

FLAGSh

FLAGS1

Cs

DS

Ss

ES

Instruction Pointer

Status Flags

Code Segment
Data Segment
Stack Segment

Extra Segment

Appendix K
8086/8088 Instruction Set Summary

'This summary is presented only for reference use. For those
instructions that can have a variety of operands, the different
possibilities are listed. Please refer to outside documentation
for more detailed explanations of the exact use of these
instructions. :
Data Transfer Instructions
A. MOV - Move:
- register or memory location to or from register
- immediate to register or memory location
- immediate to register
- memory location to accumulator
- accumulator to memory location
- register or memory location to segment register
- segment register to register or memory location
B. PUSH - Push:
- register or memory location
- register
- segment register
C. POP - Pop:
- register or memory location
- register
- segment register
D. XCHG - Exchange:

- register or memory location with register

- register with register

E. IN - Input from:

- fixed port

- variable port
F. OUT - Output to:

- fixed port

- variable port
G. XLAT - Translate byte to AL:
H. LEA - Load EA (Effective Address) to register
I. LDS - Load pointer value to DS and register
J. LES - Load pointer value to ES and register
K. LAHF - Load AH with flags
L. SAHF - Store AH into flags
M. PUSHF - Push flags

N. POPF - Pop flags

Arithmetic Instructions
A, ADD - Add:

- register or memory location with register with result
stored in either

- 1immediate to reg.ster or memory location
- immediate to accumulator
B. ADC - Add with carry:

-~ register or memory location with register with result
stored in either

- immediate to register or memory location
-~ immediate to accumulator

C. INC - Increment:
- register or memory location

- register

K-2

AAA - ASCII adjust for addition
DAA - Decimal adjust for addition

SUB - Subtract:

- register or memory location with register with result

stored in either
- immediate to register or memory location
- immediate to accumulator

SBB - Subtract with borrow:

- register or memory location with register with result

stored in either
- immediate to register or memory location
- immediate to accumulator
DEC - Decrement:
- register or memory location
- register

NEG - Negate the contents of a specified register
memory location

CMP - Compare:

- register or memory location with register
- 1immediate with register or memory location
- immediate with accumulator

AAS - ASCII adjust for subtract

DAS - Decimal adjust for subtract

MUL - Multiply (unsigned) accumulator by register
memory location

or

or

IMUL - Integer multiply (signed) accumulator by register

memory location
AAM - ASCII adjust for multiplication

DIV - Divide (unsigned) accumulator by register
memory location

or

Q. IDIV - Integer divide (signed) accumulator by register
or memory location

R. AAD - ASCII adjust for division
~

S. CBW - Convert byte to word and perform sign extension
from AL to AX

T, CWD - Convert word to doubleword and perform sign
extension from AX to DX
Logical Instructions
A. NOT - Ones complement of register or memory location
B. SHL - Logical left shift of register
C. SAL - Arithmetic left shift of register
D. SHR - Logical right shift of register
E. SAR - Arithmetic right shift of register
F. ROL - Rotate register left
G. ROR - Rotate register right
H. RCL - Rotate register left through carry flag
I. RCR - Rotate register right through carry flag
J. AND - Logical and:

- register or memory location with register with result
stored in either

- immediate to register or memory location
- immediate to accumulator
K. TEST - Logical AND test with result stored in flags
- register or memory location with register
- immediate data and register or memory location
- immediate data and accumulator
L. OR - Logical or:

- register or memory location with register with result
stored in either

- 1immediate to register or memory location
- immediate to accumulator
M. XOR - Exclusive or:

- register or memory location with register with result
stored in either

- 1immediate to register or memory location

- immediate to accumulator

String Manipulation Instructions
A. REP - Repeat
B. MOVS - Move byte or word
C. CMPS - Compare byte or word
D. SCAS - Scan byte or word
E. LODS - Load byte or word to AL or AX

F. STDS - Store byte or word from AL or AX

‘Control Transfer Instructions
A, CALL - Call subroutine:
- direct within segment
-~ indirect within segment
- direct intersegment
- indirect intersegment
B. JMP - Unconditional jump:
- direct within segment
- direct within segment-short
- indirect within segment
- direct intersegment

-~ indirect intersegment

C.

RET - Return from CALL:

- within segment

- within segment and add immediate to stack pointer

- intersegment

- intersegment and add immediate to stack pointer

JE or JZ - Jump on equal or zero *¥*

** The jump instructions that are listed in pairs are
exactly identical and can be used interchangably.

JL or JNGE

JLE or JNG

JB or JNAE

JBE or JNA

Jump
Jump
Jump

Jump

on

on

on

on

less or not greater or equal
less or equal or not greater
below or not above or equal

below or equal or not above

JP or JPE - Jump on parity or parity even

JO - Jump on overflow

JS - Jump on

JNE or JNZ
JNL or JGE
JNLE or JG
JNB ‘or JAE
JNBE or JA
JNP or JPO

JNO - Jump

sign
Jump
Jump
Jump
Jump
Jump

Jump

on not

JNS - Jump on not

on

on

on

on

not equal or not zero
not less or greater or equal
not less or equal or greater

not below or above or equal

on not below oxr equal or above
on not parity or parity odd
overflow

sign

JCXZ - Jump on CX zero

LOOP - Subtract one from CX and jump if greater
than zero

LOOPZ or LOOPE - Loop while.'zero or equal

LOOPNZ or LOOPNE - Loop while not zero or equal

X. INT - Interrupt
- Type specified
Y. INTO - Interrupt on overflow

Z. IRET - Return from interrupt

Processor Control Instructions
A. CLC - Cleér carry
B. CMC - Complement carry
C. STC -~ Set carry
D. CLD - Clear direction
E. STD - Set direction
F. CLI - Clear interrupt
G. STI - Set interrupt
H. HLT - Halt
I. WAIT - Wait
J. ESC - Escape to external device

K. LOCK - Bus lock prefix

Appendix L
8086/8088 Instruction
Set Listed Alphabetically

Instruction Object Code Bytes Clock Periods

AAA 37 1 4
AAD DS 2 60
OA
AAM D4 2 83
OoA
AAS 3F 1 4
ADC ac,data 00010i0w 2o0r3 4
kk
(jil
ADC memlreg1 data 100000sw 3,4,5 reg: 4
mod 010 r/m or6
[DISP] mem: 17 + EA
[DISP)
kk
(il
ADC mem/reg1,r7|em/reg2 000100dw 2,30r4 regtoreg: 3
mod rrr r/m 2,30r4 mem toreg: 9 + EA
[DISP] reg to mem: 16 + EA
(DisP]
ADD ac,data 0000010w 2o0r4 4
kk
(jil
ADD mem/reg,data 100000sw 3,4,5 reg: 4
mod 000 r/m or6 mem: 17 + EA -
[DISP]
[DISP]

ADD mem/reg1 ,mem/reg2 000000dw 2,30r4 regto reg: 3
mod rrr rfm mem to reg: 9 + EA
[DISP] reg. tomem: 16 + EA
[DISP]
AND ac,data 0010010w 2o0ré4 4
kk
(il
AND mem/reg,data 1000000w 3,4,5 reg: 4
mod 100 r/m or6 Z
(DISP] mem: 17 + EA
[DISP]
kk
Lijl
AND mem/reg1 ,memlreg2 001000dw 2,30r4 reg to reg: 3
mod rrr r/m mem toreg: 9+ EA
[DISP] reg tomem: 16 + EA
[DisP]
CALL addr 9A 5 28
kk
ji
hh
g9
CALL disp 16 E8 3 19
kk
ji
CALL mem FF 2,30r4 32-bit mem pointer:
mod 011 r/m 37 +EA
[DiSP]
(DISP]
CALL mem/reg FF 2,3o0r4 16-bit reg pointer:
mod 010 r/m 16
[DISP] 16 bit mem pointer:
[DISP] 21 + EA

L-1

Instruction Object Code Byte Clock Periods
CBW a8 1 2
cLC F8 1 2
CLD FC 1 2
cul FA 1 2
CcMC F5 1 2
CMmP ac,data 0011110w 20r3 4
kk
[ii
CMP mem/reg,data 100000sw 3,0r4 or reg: 4
mod 111 r/m 6 mem: 10 + EA
[DIsP])
[DIsSP)
kk
il
CMP memlreg1 ,mem/reg2 001 110dw 2,30r4 regtoreg: 3
mod rer rfm mem toreg: 9+ EA
[DISP] reg tomem: 9+ EA
[DISP]
CMPS 101001 1w 1 22
9 + 22/repetition*
CWD 99 1 5
DAA 27 1 4
DAS 2F 1 4
DEC mem/reg LRRRAR AT 2,30r4 reg: 3
mod 001 r/m
[DISP) mem: 15+ EA
[DISP)
DEC 16-bit reg 01001 rrr 1 2
DIV mem/reg 1111011w 2,30r4 8-bit reg:
mod 110 r/m 80 — 90
[DiIsP) 16-bit reg:
(D1isP] 144 — 162
8-bit mem:
(86 —+ 96) + EA
16-bit mem:
{150 - 168) + EA
ESC mem/reg 11011xxx 2,30r4 mem: 8+ EA
maod xxx r/m reg: 2
(DISP]
(DisP]
HLT F4 1 2
101V mem/reg 1111011w 2,30r4 8-hit reg:
mod 111 r/m 101 -+ 112
[DISP] 16-bit reg:
[DisP] 165 - 184
8-bit mem:
{107 -+ 118) + EA
16-bit mem:
(171 - 190) + EA
IMUL mem/reg 1111011w 2,30r4 8-bit reg:
mod 101 r/m 80 - 98
[DISP] 16-bit reg:
[DISP] 128+ 154
8-bit mem:
(86 —~ 104) + EA
16-bit mem:
{134 - 160) + EA
IN ac, DX 1110110w 1 8
IN ac, port 1110010w 2 10

Instruction Object Code Bytes Clock Periods
INC mem/reg 1111111w 2,30r4 reg: 3
mod 000 r/m mem: 15 + EA
(DISP]
[D1SP])
INC 16-bit reg 01000rrr 1 2
INT 11001100* 1 52
11001101 2 51
type
INTO CE 1 interrupt: 53
no interrupt: 4
IRET CF 1 24
JA disp 77 2 4/No Branch
JNBE disp 16/Branch
JAE disp 73 2 4/No Branch
JNB disp 16/Branch
JB disp 72 2 4/No Branch
JNAE disp 8/Branch
JBE disp 76 2 4/No Branch
JNA disp 16/Branch
JCcxz disp E3 2 6/No Branch
disp 18/Branch
JE disp 74 2 4/No Branch
Jz disp 16/Branch
JG disp 7F 2 4/No Branch
JNLE disp 16/Branch
JGE disp 7D 2 4/No Branch
JNL "disp 16/Branch
JL disp 7C 2 4/No Branch
JNGE disp 16/Branch
JLE disp 7€ 2 4/No Branch
JNG disp 16/8ranch
JMP addr EA 5 15
kk
il
hh
ag
JMP disp EB 2 15
disp
JMP disp 16 E9 3 15
kk 1
i
JMP mem FF 2,30r4 mem ptr 32:
mod 101 r/m 24 +EA
[DISP]
[DISP]
JMP mem/reg FF 2,30r4 reg ptr 16:
mod 100 rr/m 1
[DISP] mem ptr 16:
[DISP] 18 + EA
JNE disp 75 2 4/No Branch
JNZ disp 16/Branch
JNO disp 7 2 4/No Branch
disp 16/Branch
JNP disp 7B 2 4/No Branch
JPO disp 16/8Branch
JNS disp 79 2 4/No Branch
disp 16/Branch
JO disp 70 2 4/No Branch
disp 16/8ranch

* Implied type =3

Instruction Object Code Bytes Clock Periods
JP disp 7A 2 4/No Branch
JPE disp 16/Branch
JS disp 78 2 4/No Branch
disp 16/Branch
LAHF 9F 1 4
LDS reg,mem C5 2,30r4 16 + EA
mod rrr r/m
(DISP]
{DISP]
LEA reg,mem 8D 2,30r4 2+EA
mod rrr r/m
[DISP]
[DISP]
LES reg,mem Cc4 2,30r4 16 + EA
mod rrr r/m
[DISP)
[DISP]
LOCK FO 1 2
LODS 1010110w 1 12
9 + 13/repetition*
LOOP disp E2 2 5/No Branch
disp 17/Branch
LOOPE disp E1 2 6/No Branch
LOOPZ disp 18/Branch
LOOPNE disp EO 2 5/No Branch
LOOPNZ disp 19/Branch
MOV mem/reg1 ,mem/reg2 100010dw 2,30r4 regtoreg: 2
mod rre r/m reg to mem: 8 + EA
{DISP] mem to reg: 9 + EA
(DisP)
MOV reg,data 1011 wrrr 2o0r3 4
kk
[iil
MoV ac,mem 1010000w 3 10
kk
i
MOV mem,ac 1010001w 3 10
kk
ii .
MOV segreg,mem/reg 8E 2,30r4 regtoreg: 2
mod Orr r/m mem to reg: 8 + EA
[(DISP]
(DISP)
MOV mem/reg,segreg 8C 2,30r4 reg toreg: 2
mod Orr r/m regto mem: 9 + EA
[DISP]
[DISP])
MOov mem/reg,data 1100011w 3.4,50r reg/mem: 10 + EA
mod 000 r/m 6
[DisP]
[DISP]
kk
Liil
MOVS 1010010w 1 18

9 + 17/repetition*

* When preceded by REF prefix

Instruction Object Code Bytes Clock Periods
MUL mem/reg 1111011w 2,30r4 8-bit reg:
mod 100 r/m 70—+ 77
(DISP] 16-bit reg:
[DISP] 118 -+ 133
8-bit mem:
(76 - 83) + EA
16-bit mem:
(124 - 139) + EA
NEG mem/reg 1111011w 2,30r4 reg: 3
mod 011 r/m mem: 16 + EA
[DISP]
[(DISP]
NOP o0 1 3
NOT mem/reg 1111011w 2,3o0r4 reg: 3
mod 010 r/m mem: 16 + EA
[DISP)
[DISP]
OR ac,data 0000110w 20r3 4
kk
(ii}
OR mem/reg,data 1000000w 3,4,50r reg: 4
mod-001 r/m 6 mem: 17 + EA
(DISP]
[DISP]
kk
fiil
OR mem/reg1 ,mem/reg2 000010dw 3.4,50r6 regtoreg: 3
mod rrr r/m mem to reg: 9 + EA
[DISP] reg tomem: 16 + EA
[DISP]
kk
[iil
ouT DX,ac 111011 1w 1 8
ouT port,ac 111001 1w 2 10
Yy
POP mem/reg 8F 2,30r4 reg: 8
mod 000 r/m mem: 17 + EA
[DISP)
[DISP]
POP reg 0101 1rrr 1 8
POP segreg 000ss111 1 8
POPF 9D 1 8
PUSH mem/reg FF 2,30r4 reg: 11
mod 110 r/m mem: 16 + EA
[DISP]
3 (DISP]
PUSH reg 01010rrr 1 10
PUSH segreg 000ss110 1 10
PUSHF :[o} 1 10
RCL mem/reg,count 110100cw 2,30r4 count =1
mod 010 r/m reg: 2
[DISP] mem: 15+ EA
[DISP] count = [CL]
reg: 8+ (4 *N)
mem: 20+ EA + (4 * N)

N = count value in CL

Instruction Object Code Bytes Clock Periods
RCR mem/reg,count 110100cw 2,30r4 count = 1
mod 011 r/m reg: 2
[DISP] mem: 15+ EA
[DISP] count = [CL)
reg: 8+ (4 * N)
mem: 20 + EA + (4 * N)
REP {REPE/REPNE 1111001z 1 2
RET (Inter-segment) cB 1 18
RET (Intrasegment) Cc3 1 8
RET disp 16 (Inter-segment) CA 3 17
kk
ii
RET disp 16 (Intra-segment) c2 3 12
kk
i
ROL mem/reg,count 110100cw 2,30r4 count = 1
mod 000 r/m reg: 2
[DISP] mem: 15+ EA
[DISP] count = [CL)
reg: 8+ (4 * N)
mem: 20+ EA + (4 * N)
ROR mem/reg,count 110100cw 2,30r4 count =1
mod 001 r/m reg: 2
[DISP] mem: 15 + EA
[DISP) count = [CL]
reg: 8+ (4 * N)
mem: 20 + EA + {4 * N)
SAHF 9E 1)
SAR mem/reg,count 110100cw 2,30r4 count =1
mod 111 r/m reg: 2
[DISP] mem: 15 + EA
[DISP] count = [CL]
reg: 8 + (4 * N)
mem: 20 + EA + (4 * N)
SBB ac,data 0001110w 2o0r3 4
kk
[jil
SBB mem/reg,data 100000sw 3.4,50r reg: 4
mod 011 r/m 6 rem: 17 + EA
[DISP]
[DiSP)
kk
[iil
SBB mem/mg‘.mem/reg2 0001 10dw 2,30r4 reg from reg: 3
mod rrr r/m mem from reg: 9 + EA
[DISP] reg from mem: 16 + EA
(DIsP]
SCAS 1010111w 1 15
9 + 15/repetition*
SEG segreg 001ss110 1 2
SHL mem/reg,count 110100cw 2,30r4 count = 1
SAL mod 100 r/m & reg: 2
[DISP] mem: 15 + EA
[DISP] count = [CL]
reg: 8+ (4 *N)

mem: 20 + EA + (4 * N)

* When preceded by REP prefix
N = count value in CL

Instruction Object Code Bytes Clock Periods
SHR mem/reg,count 110100cw 2,30r4 count =1
mod 101 ¢/m reg: 2
[DISP] mem: 15+ EA
[DISP] count = {CL]
reg: 8+ (4 *N)
mem: 20 + EA + (4 * N)
STC F9 1 2
STD FD 1 2
STI FB 1 2
STOS 1010101w 1 1
9 + 10/repetition™®
suB ac,data 0010110w 2o0r3 4
kk
(ji]
suB mem/reg,data 100000sw 3,4,50r reg: 4
mod 101 r/m 6 mem: 17 + EA
[DISP]
[DISP]
kk
1ii)
suB mem/reg,,mem/reg2 001010dw 2,30r4 reg from reg: 3 -
mod rrr r/m mem from reg: 9 + EA
[DISP] reg from mem: 16 + EA
[DISP)
TEST ac,data 1010100w 20r3 4
kk
(ji
TEST mem/reg,data 1111011w 3,4,50r reg: 5
mod 000 r/m 6 mem: 11+ EA
[DISP])
[DISP]
kk
(i
TEST reg,mem/reg 1000010w 2,30r4 regwith reg: 3
mod rrr r/m reg with mem: 9 + EA
[DISP]
[DISP]
WAIT 9B 1 3{min.) + 5n
XCHG regac 10010rrr 1 3
XCHG reg,mem/reg 100011w 2,30r4 reg with reg: 4
mod rrr r/im reg with mem: 17 + EA
[DISP])
[DISP]
XLAT D7 1 1
XOR ac,data 0011010w 20r3 4
kk
[ii)
XOR mem/reg,data 100000w 3,4,50r reg: 4
mod 110 r/m 6 mem: 17 + EA
[DISP]
[DISP]
kk
i}
XOR mem/reg1 ,mem/reg2 001100dw 2,30r4 reg with reg: 3
mod rrr r/m mem with reg: 9 + EA
(DiISP] reg with mem: 16 + EA
[DISP)

* When preceded by REP prefix
n = clocks per sample of the TEST input

Appendix M 8086/8088

Instruction Set Object Codes in
Numeric Sequence Ascending

Object Code
Mnemonic
Byte #0 Byte # 1 Succeeding Bytes
00 mod reg r/m [disp] [disp] ADD mem/reg,reg (byte)
01 mod reg r/m (disp] [disp] ADD mem/reg,reg (word)
02 mod reg r/m [disp] [disp] ADD reg. mem/reg {byte)
03 mod reg r/m (disp] [disp] ADD reg, mem/reg (word)
04 kk ADD AL kk
05 kk ji ADD AX, jikk
06 PUSH ES
07 POP ES
08 mod reg r/m [disp] {disp] OR mem/reg,reg {byte)
09 mod reg r/m (disp] [disp] OR mem/reg,reg (word)
0A mod reg r/m (disp] [disp) OR reg,mem/reg (byte)
0B mod reg r/m [disp) [disp] OR reg,meme/reg (word)
0oC kk OR AL,kk
oD Kk i OR AL,jjkk
0E PUSH CS
OF Not used
10 mod reg r/m (disp] (disp] ADC meme/reg,reg (byte)
1 mod reg r/m [disp] [disp] ADC meme/reg,reg (word)
12 mod reg r/m {disp] [disp] ADC reg,mem/reg (byte)
13 mod reg r/m (disp] [disp] ADC reg,mem/reg (word)
14 kk ADC AL,kk
15 kk il ADC AX,jjkk
16 PUSH SS
17 POP SS
18 mod reg r/m [disp] [disp] SBB mem/reg,reg (byte)
19 mod reg r/m [disp] [disp] SBB mem/reg,reg (word)
1A mod reg r/m [disp] [disp] SBB reg,mem/reg (byte)
1B mod reg r/m [disp] [disp] SBB reg,mem/reg (word)
1C kk SBB AL,kk
1D kk i SBB AX,jjkk
1E PUSH DS
1F POP DS
20 mod reg r/m [disp] [disp] AND mem/reg,reg (byte)
21 mod reg r/m [disp] [disp] AND mem/reg,reg (word)
22 mod reg r/m [disp] [disp] AND reg,mem/reg (byte)
23 mod reg r/m [disp] (disp] AND reg,mem/reg (word)
24 kk AND AL kk
25 Kk ii AND AX,jjkk
26 SEG ES
27 DAA
28 mod reg r/m (disp] [disp) SUB mem/reg,reg (byte)
29 mod reg r/m [disp] [disp] SUB mem/reg reg {word)
2A mod reg r/m [disp) [disp] SUB reg,mem/reg (byte)
2B mod reg r/m [disp] [disp] SUB reg,mem/reg (word)
2C kk SUB AL, kk
2D kk i SUB AX,jjkk
2E SEG CS
2F DAS

Object Code

Mnemonic
byte #0 Byte #1 Succeeding Bytes

30 mod reg r/m {disp] [disp} XOR mem/reg,reg (byte)
31 mod reg r/m {disp] [disp] XOR mem/reg,reg {word)
32 mod reg r/m [disp] [disp] XOR reg,mem/reg (byte)
33 mod reg r/m (disp] [disp] XOR reg,mem/reg {word)
34 kk XOR AL kk
35 kk i XOR AX,jjkk
36 SEG SS
37 AAA
38 mod reg r/m [disp] [disp] CMP mem/reg,reg (byte)
39 mod reg r/m (disp] [disp] CMP mem/reg,reg (word)
3A mod reg r/m [disp] [disp) CMP reg,mem/reg (byte)
36 mod reg r/m (disp] [disp) CMP reg,mem/reg {word)
3C kk CMP AL, kk
3D Kk i CMP AX,jjkk
3E SEG DS
3F AAS
40 INC AX
41 INC CX
42 INC DX
43 INC BX
44 INC SP
45 INC BP
46 INC Sl
47 INC DI
48 DEC AX
49 DEC CX
4A DEC DX
4B DEC BX
4C DEC SP
4D DEC BP
4E DEC sI
4F DEC DI
50 PUSH AX
51 PUSH CX
52 PUSH DX
83 PUSH BX
54 PUSH SP
55 PUSH BP
56 PUSH SI
57 PUSH DI
58 POP AX
59 POP CX
5A POP DX
5B POP BX
5C POP SP
5D POP BP
5E POP SI
5F POP DI

60-6F Not Used

Object Code

Mnemonic
Byte #0 Byte #1 Succeeding Bytes
70 disp JO disp
71 disp JNO disp
72 disp JB or JNAE or JC disp
73 disp JNB or JAE or JNC disp
74 disp JE or JZ disp
75 disp JNE or JNZ disp
76 disp JBE or JNA disp
77 disp JNBE or JA disp
78 disp JS disp
79 disp JNS disp
TA disp JP or JPE disp
7B disp ’ JNP or JPO disp
7C disp | JL or INGE disp
70 disp i JNL or JGE disp
7€ disp JLE or JNG disp
7F disp JNLE or JG disp
80 mod 000 r/m [disp] (disp] kk ADD mem/reg,kk
80 mod 001 r/m [disp] [disp] kk OR mem/reg,kk
80 mod 010 r/mt [disp] [disp] kk ADC mem/reg,kk
80 mod 011 r/m [disp] [disp] kk SBB mem/reg,kk
80 mod 100 r/m [disp] [disp) kk AND mem/reg,kk
80 mod 101 r/m (disp] [disp] kk SUB mem/reg,kk
80 mod 110 r/m {disp] [disp] kk XOR mem/reg,kk
80 mod 111 r/m [disp] [disp] kk CMP mem/reg,kk
81 mod 000 r/m (disp] [disp] kkij ADD mem/reg,jjkk
81 mod 001 r/m [disp) [disp] kkijj OR mem/reg,jjkk
81 mod 010 r/m [disp] [disp] kkjj ADC mem/reg,jjkk
81 mod 011 r/m [disp] [disp] kkijj SBB mem/reg,jikk
81 mod 100 r/m [disp] [disp] kkijj AND mem/reg,jjkk
81 mod 101 r/m [disp] [disp] kkijj SUB mem/reg,jjkk
81 mod 110 r/m [disp] [disp] kkijj XOR mem/reg,jjkk
81 mod 111 r/m [disp] [disp] kkjj CMP mem/reg,jjkk
82 mod 000 r/m [disp] [disp] kk " ADD mem/reg,kk (byte)
82 xx 001 xxx Not used
82 mod 010 r/m [disp] [disp] kk* ADC mem/reg,kk (byte)
82 mod 011 r/m [disp] [disp] kk SBB mem/reg,kk (byte)
82 xx 100 xxx Not used
82 mod 101 r/m [disp] [disp] kk SUB mem/reg,kk (byte)
82 xx 110 xxx Not used
82 mod 111 r/m [disp] [disp] kk CMP mem/reg,kk (byte)
83 mod 000 r/m [disp] [disp] kk ADD mem/reg,jjkk (word-sign extended)
83 xx 001 xxx Not used
83 mod 010 r/m [disp] [disp] kk ADC mem/reg,jjkk (word-sign extended)
83 mod 011 r/m [disp] [disp] kk SBB mem/reg,jjkk (word-sign extended)
83 xx 100 r/m Not used
83 mod 101 r/m [disp] [disp) kk SUB mem/reg,jjkk (word-sign extended)
83 xx 110 xxx Not used
83 mod 111 r/m [disp] [disp] kk CMP mem/reg,jjkk (word-sign extended)
84 mod reg r/m [disp] [disp] TEST mem/reg,reg (byte)
85 mod reg r/m [disp) [disp] TEST mem/reg,reg (word)
86 mod reg r/m [disp] [disp] XCHG reg,mem/reg (byte)
87 mod reg r/m (disp] [disp) XCHG reg,mem/reg (word)
88 mod reg r/m [disp] [disp] MOV mem/reg,reg {byte)
89 mod reg r/m (disp] (disp] MOV mem/reg,reg (word)

Object Code

Mnemonic

Byte #0 Byte #1 Succeeding Bytes

8A mod reg r/m [disp] (disp) MOV reg,mem/reg {byte)
88 mod regr/m {disp] [disp] MOV reg,mem/reg {word)
8C mod Oss r/m [disp] [disp] MOV mem/reg segreg
8C x 1 XXXXX Not used
8D mod reg r/m [disp) [disp] LEA reg,addr
8E mod Oss r/m [disp] [disp] MOV segreg, mem/reg
8E xx 1 XXXXX Not used
8F mod 000 r/m [disp] [disp] POP mem/reg
8F xx 001 xxx Not used
8F xx 010 xxx Not used
8F xx 011 xxx Not used
8F xx 100 xxx Not used
8F xx 101 xxx Not used
8F xx 110 xxx Not used
8F xx 111 xxx Not used

Not used
90 NOP
g1 XCHG AX,CX
92 XCHG AX,DX
93 XCHG AX,BX
94 XCHG AX,SP
95 XCHG AX,BP
96 XCHG AX,S!I
97 XCHG AX,DI
98 cBwW
99 CWD
9A kk jihhgg CALL addr
9B WAIT
9c PUSHF
aD POPF
9E SAHF
9F LAHF
A0 aq pp MOV AL,addr
A1l aq pp MOV AX,addr
A2 qq [s"] MOV addr, AL
A3 aq PP MOV addr AX
A4 MOVS BYTE
A5 MOVS WORD
A6 CMPS BYTE
A7 CMPS WORD
A8 kk TEST, AL kk
A9 Kk ii TEST AX,jikk
AA STOSBYTE
AB STOS WORD
AC LODS BYTE
AD LODS WORD
AE SCAS BYTE
AF SCAS WORD

Object Code

Mnemonic
Byte #0 Byte #1 Succeeding Bytes

80 kk MOV AL,kk
B1 kk MOV CL kk
B2 kk MOV DL,kk
B3 kk MOV BL,kk
B4 kk MOV AH kk
B5S KK MOV CH kk
B6 kk MOV DH,kk
B7 kk MOV BH,kk
B8 kk ii MOV AX,jikk
B9 kk ii MOV CX,jikk
BA kk i MOV DX, jjkk
BB kk i MOV BX,jikk
BC kk ji MOV SP,jjkk
BD Kk ji MOV BP,jjkk
BE kk ji MOV Sl1,jjkk
BF kk ii MOV Dl,jjkk
co Not used
c1 Not used
c2 Kk ii RET jjkk
c3 RET
c4 mod reg r/m [disp] (disp] LES reg,addr
C5 mod reg rfm [disp] (disp] LDS reg,addr
c6 mod 000 r/m [disp] [disp] kk MOV mem,kk
C6 xx 001 xxx Not used
C6 xx 010 xxx Not used
&3] xx 011 xxx Not used
Ccé xx 100 xxx Not used
c6 xx 101 xxx Not used
6 xx 110 xxx Not used
Cc6 xx 111 xxx Not used
c7 mod 000 r/m [disp) [disp] kKkijj MOV mem,jjkk
C7 xx 001 xxx Not used
c7 xx 010 xxx Not used
Cc7 xx 011 xxx Not used
c? xx 100 xxx Not used
Cc7 xx 101 xxx Not used
Cc7 xx 110 xxx Not used
Cc7 xx 111 xxx Not used
c8 Not used
c9 Not used
CA Kk ji RET jikk
cB RET
ccC INT3
CD type INT Type
CE INTO
CF IRET

M-5

Object Code

Mnemonic

Byte #0 Byte # 1 Succeeding Bytes
DO mod 000 r/m [disp] [disp] ROL mem/reg,1 (byte}
DO mod 001 r/m [disp] [disp) ROR mem/reg,1 (byte)
[als] mod 010 r/m [disp] [disp] RCL mem/reg,1 (byte)
DO mod 011 r/m [disp] [disp] RCR mem/reg,1 (byte)
DO mod 100 r/m {disp] [disp] SAL or SHL mem/reg,1 (byte)
DO mod 101 r/m [disp] [disp] SHR mem/reg,1 (byte)
DO xx 110 xxx Not used
DO mod 111 r/m [disp] [disp] SAR mem/reg,1 (byte)
D1 mod 000 r/m (disp) [disp] ROL mem/reg,1 (word)
D1 mod 001 r/m [disp] [disp] ROR mem/reg,1 (word)
D1 mod 010 r/m [disp] [disp] RCL mem/reg,1 (word)
D1 mod 011 r/m [disp] [disp] RCR mem/reg,1 {word)
D1 mod 100 r/m [disp] [disp] SAL or SHL mem/reg,1 (word)
D1 mod 101 r/m [disp] [disp] SHR mem/reg,1 (word)
D1 xx 110 xxx Not used
D1 mod 111 r/m [disp) [disp] SAR mem/reg,1 {word)
D2 mod 000 r/m [disp] [disp] ROL mem/reg,CL (byte)
D2 mod 001 r/m [disp] (disp] ROR mem/reg,CL (byte)
D2 mod 010 r/m [disp] [disp] RCL mem/reg,CL (byte)
D2 mod 011 r/m [disp] [disp] RCR mem/reg,CL (byte)
D2 mod 100 r/m [disp] (disp) SAL or SHL mem/reg,CL {byte)
D2 mod 101 r/m [disp] [disp] SHR mem/reg,CL (byte)
D2 xx 110 xxx Not used .
D2 mod 111 r/m [disp) [disp] SAR mem/reg,CL (byte)
D3 mod 000 r/m [disp) [disp] ROL mem/reg,CL (word)
D3 mod 001 r/m [disp] [disp] ROR mem/reg,CL (word)
D3 mod 010 r/m [disp] [disp] RCL mem/reg,CL (word)
D3 mod 011 r/m [disp] [disp] RCR mem/reg,CL (word)
D3 mod 100 r/m [disp) [disp] SAL or SHL mem/reg,CL (word)
D3 mod 101 r/im (disp) [disp] SHR mem/reg,CL {word)
D3 xx 110 xxx Not used
D3 mod 111 r/m (disp] [disp] SAR mem/reg,CL (word)
D4 0A AAM
D5 0A AAD
D6 Not used
D7 XLAT
D8 mod xxx r/m [disp] [disp] ESC mem/reg
D9 mod xxx r/m [disp] (disp) ESC mem/reg
DA mod xxx r/m [disp] [disp] ESC mem/reg
DB mod xxx r/m [disp] (disp] ESC mem/reg
2]} mod xxx rfm [disp] (disp) ESC mem/reg
DD mod xxx r/m [disp] [disp] ESC mem/reg
DE mod xxx r/m (disp] [disp) ESC mem/reg
DF mod xxx r/m [disp] [disp] ESC mem/reg
EO disp LOQPNE/LOOPNZ disp
E1 disp LOOPE/LOOPZ disp
E2 disp LOOP disp
E3 disp JCXZ disp
E4 kk IN AL kk
€5 kk IN AX, kk
E6 kk OuUT kk, AL
E7 kk OUT kk,AX
E8 disp disp CALL disp 16
E9 disp disp JMP disp 16

Object Code

Mnemonic

Byte # 0’ Byte #1 Succeeding Bytes

EA kk ji bh gg JMP addr

EB disp JMP disp

EC IN AL,DX

ED IN AX,DX

EE OUT DX,AL

EF OUT DX,AX

FO LOCK

F1 Not used

F2 REPNE or REPNZ

F3 REP or REPE or REPZ

F4 HLT

F5 CMC

F6 mod 000 r/m [disp] [disp] kk TEST mem/reg kk

F6 xx 001 xxx Not used

F6 mod 010 r/m [disp] [disp] NOT mem/reg (byte)

F6 mod 011 r/m (disp] (disp] NEG mem/reg (byte) -

F6 mod 100 r/m [disp] [disp] MUL mem/reg {byte)

F6 mod 101 r/m [disp] [disp] IMUL mem/reg (byte)

F6 mod 110 r/m [disp] [disp) DIV mem/reg (byte)}

F6 mod 111 r/m [disp) [disp] IDIV mem/reg {byte)

F7 mod 000 r/m [disp] [disp] kkijj TEST mem/reg,jjkk

F7 xx 001 xxx Not used

F7 mod 010 r/m [disp] {disp] NOT mem/reg {word)

F7 mod 011 r/m [disp] (disp] NEG mem/reg (word)

F7 mod 100 r/m [disp] [disp] MUL mem/reg (word)

F7 mod 101 r/m [disp] [disp] IMUL mem/reg {(word)

F7 mod 110 r/m [disp] [disp] DIV mem/reg (word)

F7 mod 111 r/m [disp] [disp] IDIV mem/reg {word)

F8 cLC

F9 STC

FA cLl

FB STI

FC CLD

FD STD

FE mod 000 r/m [disp] [disp] INC mem/reg {byte)

FE mod 001 r/m [disp] [disp] DEC mem/reg (byte)

FE xx 010 xxx Not used

FE xx 011 xxx Not used

FE xx 100 xxx Not used

FE xx 101 xxx Not used

FE xx 110 xxx Not used

FE xx 111 xxx Not used

FF mod 000 r/m [disp] [disp) INC mem/reg {word)

FF mod 001 r/m [disp] [disp] DEC mem/reg (word)

FF mod 010 r/m [disp] (disp] CALL mem/reg

FF mod 011 r/m [disp] (disp] CALL mem

FF mod 100 r/m [disp] [disp] JMP mem/reg

FF mod 101 r/m [disp] [disp] JMP mem

FF mod 110 r/m [disp] [disp] PUSH mem

FF xx 111 xxx Not used

/Multitech

INDUSTRIAL CORP

OFFICE/

16FL. 135 CHIEN KUO N. ROAD, SEC. 2, TAIPE!
10479, TAIWAN, R.O.C.

TEL: (02)505-5533

TELEX: 19162 MULTIIC FAX: (02)505-4451
FACTORY/

1 INDUSTRYE, ROAD, Il

HSINCHU SCIENCE-BASED INDUSTRIAL PARK
HSINCHU. TAIWAN 300, R.O.C.

| i
i

DOC.NO: MBBO | = 86050 |

